Giovanni Vulpetti: Clarifying Magsail Concepts

Over the years we’ve looked at magnetic sail (magsail) concepts of various kinds and discussed whether a spacecraft could do such things as ‘riding’ the solar wind to high velocities, or use a stellar wind to brake against as it entered a destination solar system. But just how workable is the magsail? In a 2007 paper called “Theory of Space Magnetic Sail Some Common Mistakes and Electrostatic MagSail” now available on the arXiv site, Alexander Bolonkin argues that magsail concepts are unworkable because induced fields resulting from two-way interactions between the solar wind and the craft’s magsail disrupt the previously calculated effect.

In fact, Bolonkin believes that previous work on the matter is seriously compromised, as he said upfront in the abstract of his paper:

The first reports on the “Space Magnetic Sail” concept appeared more [than] 30 years ago. During the period since some hundreds of research and scientific works have been published, including hundreds of research report by professors at major famous universities. The author herein shows that all these works related to Space Magnetic Sail concept are technically incorrect because their authors did not take into consideration that solar wind impinging a MagSail magnetic field creates a particle magnetic field opposed to the MagSail field. In the incorrect works, the particle magnetic field is hundreds times stronger than a MagSail magnetic field. That means all the laborious and costly computations revealed in such technology discussions are useless: the impractical findings on sail thrust (drag), time of flight within the Solar System and speed of interstellar trips are essentially worthless working data!

th_d52cae7a789990d5f869b50844a501d1_vulpettiphoto2

Is it possible that the corpus of work on magnetic sail concepts should be disregarded? The matter came up in comments here several times in the past year as we discussed neutral particle beam propulsion (to a magsail) and other aspects of using such principles. I had no answer to the Bolonkin question but fortunately was able to turn to Giovanni Vulpetti for clarification. A well-known figure in the astronautics community, Dr. Vulpetti is a plasma physicist with extensive experience in both magnetic sail and photon sail studies. The author of over 100 papers and technical reports, and author and co-author respectively of Fast Solar Sailing, Astrodynamics of Special Sailcraft Trajectories (Springer (2012), and Solar Sails: A Novel Approach to Interplanetary Travel ( 2nd edition, Springer, 2015), Dr. Vulpetti was team coordinator for the Aurora Collaboration, which examined sail prospects in the 1990s. He has analyzed both solar and magnetic sail prospects exhaustively.

Image: Plasma physicist and deep space propulsion analyst Giovanni Vulpetti.

Dr. Vulpetti was kind enough to write an explanation of magnetic sail issues that includes background material on how the solar wind interacts with objects in space and examines the nature of plasma itself. He then analyzed Alexander Bolonkin’s objections to prior magsail studies and found them to be flawed. “[The] objection made by Bolonkin to ‘hundreds of researchers, professors at famous universities, audiences of specialists, . . .’ has no physical foundation, absolutely no basis,” was his conclusion, which was arrived at by a mathematical treatment that I had hoped to present in its entirety here on the main page of the site.

Unfortunately, formatting issues were a problem. The material in Dr. Vulpetti’s essay, I discovered, would not be as readable if squeezed into the Centauri Dreams format than if left in the form of the original PDF file. With the permission of the author, I have uploaded the PDF so that interested readers of a technical bent can see it in its original form. You can click on the link to read “Notes about misinterpreting some plasma properties,” a file that includes the figures and equations that were a challenge to reproduce effectively here. Let me take this opportunity to thank Dr. Vulpetti for his efforts, which are deeply appreciated especially in light of his busy schedule. It’s interesting to note in the essay why he himself moved primarily to photon sail work after 1992, drawn in this direction by other issues with magnetic sail spacecraft that make solar sails a far more manageable proposition.

kezerashvili_11

Image: I have to run this photo that I took years ago in the Italian Alps in remembrance of a wonderful afternoon and subsequent banquet during the Aosta interstellar conference. Dr. Vulpetti is at the left, with Roman Kezerashvili in the center and Justin Vazquez-Poritz at right.

tzf_img_post

Drake Equation: The Sustainability Filter

There are a lot of things that could prevent our species from expanding off-Earth and gradually spreading into the cosmos. Inertia is one of them. If enough people choose not to look past their own lifetimes as the basis for action, we’re that much less likely to think in terms of projects that will surely be multi-generational. That outcome doesn’t worry me overly much because it flies against the historical record. We have abundant evidence of long-term projects built by civilizations for their own purposes, and while we view pyramids or cathedrals differently than they did in their time, their artifacts show that humans are capable of this impulse. The Dutch dike system has been maintained for over 500 years, and precursor activity can be traced back as far as the 9th Century.

Nor am I concerned that most people won’t ever want to leave this planet. I have no ambition to leave it either, but in every era there have been small numbers of people who chose to leave what they knew to follow their impulses, whether they were explorers, exploiters or zealots. Given the opportunity, I’d say that spreading into the Solar System will happen as small outposts evolve into colonies, and colonies are gradually enlarged by the flow of the like-minded.

Or, at least, it will happen if we get past the L term in the famous Drake Equation, which on the level of technology describes the length of time a civilization can release detectable signals, and on a more profound level may describe the working lifetime of a technological society. It’s this factor that Adam Frank (University of Rochester) looks at in a recent New York Times essay. He’s studying the price we pay for developing a global industrial culture, wondering whether this ‘sustainability bottleneck’ may not account for the Fermi paradox; i.e., the lack of evidence for civilizations around nearby stars in an obviously fecund universe.

fea-astrobiology

Image courtesy of University of Rochester.

Civilizations need energy to operate, and as Frank points out, waste (entropy) is an inevitable part of the process of energy generation. Humans harvest about 100 billion megawatt hours of energy every year, with the consequence that we put 36 billion tons of carbon dioxide into the biosphere. We can assume that other civilizations would face the same issues as they grew. We can also see the vast changes that both Mars and Venus have been through in our own Solar System as perhaps once habitable worlds were gradually transformed by natural processes. We’re beginning to piece together general rules that can help us understand what happens as biospheres change.

Some of this change happens without the mediation of living creatures, and some occurs because of them:

…any species climbing up the technological ladder by harvesting energy through combustion must alter the chemical makeup of its atmosphere to some degree. Combustion always produces chemical byproducts, and those byproducts can’t just disappear. As astronomers at Penn State recently discovered, if planetary conditions are right (like the size of a planet’s orbit), even relatively small changes in atmospheric chemistry can have significant climate effects. That means that for some civilization-building species, the sustainability crises can hit earlier rather than later.

Frank’s interest is in studying sustainability issues as a generic astrobiological problem. You’ll recall that we’ve looked at a paper of his on this idea before (see Astrobiology and Sustainability). Working with Woodruff Sullivan (University of Washington), Frank talks in reference to Species with Energy-Intensive Technology (SWEIT), and argues that we can profitably study not only other worlds but our own previous eras of climate alteration for insight. The research program that grows out of this models SWEIT evolution along with that of the planet on which it arises with a methodology based on dynamical systems theory.

Earth’s own past suggests how complex these interrelationships can be. There was a time about two billion years after the formation of the planet when anaerobic bacteria utterly changed the biosphere by driving up the oxygen content in the atmosphere, a form of what was then pollution eventually becoming an essential for life such as ours. Never mind technology — life itself can be a game-changer. With such principles in mind, Frank and Sullivan are interested in the ‘trajectories’ civilizations take as shaped by the choices they make, some of which could result in population collapse while others lead to long-lived technological societies.

It’s always possible, Frank speculates, that we have a Fermi paradox because no civilization makes it through its sustainability crisis. But there are models that indicate this doesn’t have to happen.

By studying sustainability as a generic astrobiological problem, we can understand if the challenge we face will be like threading a needle or crossing a wide valley. Answering this question demands a far deeper understanding of how planets respond to the kind of stresses energy-intensive species (like ours) place on them. It’s an approach no different from that of doctors using different kinds of animals, and their molecular biology, to discover cures for human disease.

So maybe we’re not the only ones to tackle these problems, which are the consequences of physical laws that govern the interactions between planets and the life they sustain. We don’t have enough knowledge to provide the answer, not yet, but the generic problem is one that advanced civilizations anywhere must at some time face. I leave it to specialists like Frank to discover whether the ‘needle’ or the ‘valley’ is the best metaphor. My own suspicion is that sustainability is a manageable matter, while civilizational collapse through inadvertence via war or accident is the more likely outcome. That’s the filter on L that keeps me up at night.

The Frank and Sullivan paper is “Sustainability and the astrobiological perspective: Framing human futures in a planetary context,” Anthropocene Vol. 5 (March 2014), pp. 32-41 (full text).

tzf_img_post

Dawn: New Imagery of Ceres

Mark January 26 on your calendar. It’s the day when the Dawn spacecraft will take images of Ceres that should exceed the resolution of the Hubble Space Telescope. We’re moving into that new world discovery phase that is so reminiscent of the Voyager images, which kept re-writing our textbooks on the outer Solar System. 2015 will be a good year for such, with Dawn being captured by Ceres gravity on March 6, and New Horizons slated for a July flyby of Pluto/Charon. In both cases, we will be seeing surfaces features never before observed.

PIA19168

What we have so far from Dawn can’t match earlier Hubble imagery, the best of which is about ten years old, but it’s about three times better than the calibration images taken by the spacecraft in early December. At this point, Dawn is making a series of images to be used for navigation purposes during the approach to the dwarf planet. We have sixteen months of close study of Ceres to look forward to as the excitement builds. “Already,” says Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research, Gottingen, “the [latest] images hint at first surface structures such as craters.”

Image: An animated GIF showing bright and dark features on Ceres. The Dawn spacecraft observed Ceres for an hour on Jan. 13, 2015, from a distance of 383,000 kilometers. A little more than half of its surface was observed at a resolution of 27 pixels. Credit: NASA/JPL.

No spacecraft has ever visited a dwarf planet, another first for Dawn, which will also become the first spacecraft to have orbited two deep space destinations following its 2011-2012 sojourn at Vesta, where it produced over 30,000 images. Jian-Yang Li (Planetary Science Institute), who led the Hubble mapping of Ceres, says that even the early observations will be significant:

“Reproducing the Hubble observations is important to understanding the nature of Ceres’ surface. The recent detection of episodic water vapor near Ceres’ surface by the Herschel Space Observatory at a longitude observed by Dawn might arise from activity that could change Ceres’ surface over time.”

That discovery, relying on data taken in 2012, took advantage of the HIFI instrument on Herschel, which showed water vapor being emitted from the surface of Ceres, an early indication that Ceres has an icy surface and an atmosphere. Variations in the water signal during the dwarf planet’s nine hour rotation period helped Herschel scientists trace the water vapor to two spots on the surface. The two emitting regions are about five percent darker than the rest of Ceres, likely warmer regions that provide efficient sublimation of small reservoirs of water ice. In very short order, thanks to the Dawn spacecraft, we will be able to observe such features in dazzling detail.

For more on the Herschel work, see Küppers et al., “Localized sources of water vapour on the dwarf planet (1)?Ceres,” Nature 505 (23 January 2014), 525–527 (abstract).

tzf_img_post

Making the Case for Deep Space

I get few questions that are harder to answer than ‘what happened to the sense of adventure that we once had with Apollo?’ And there are few questions I get more often, usually accompanied by ‘how are we going to do starflight if we don’t even have the will to go back to the Moon?’ Both questions have unsettling answers, but the second question is open-ended. We can hope that the ‘sense of sag’ that Michael Michaud describes in talking about the post-Apollo period (for manned flight, at least) may itself evolve into something else, something far more hopeful.

But let’s dwell a moment on the first question. I’ve been looking over an essay Michaud wrote for Spaceflight in the mid-1970s, a decade of the Pioneers and the Voyagers, but also a decade when it became clear that our presence on the Moon with Apollo was going to be a short-lived affair. Instead, we were talking about Skylab, about docking operations between Soviet and American spacecraft, and the next big ticket item on the manned spaceflight agenda looked to be a reusable space shuttle. NASA wanted to deliver measurable returns, even when many of us were thinking ‘Wait! Weren’t we supposed to be headed on to Mars by now?’.

There were plenty of reasons for what some considered to be a more realistic assessment of Earth’s needs. The critics of Apollo argued that it was played as a card in the great geopolitical game of the Cold War, set up as a contest between two super-powers so that achieving the Moon meant the ‘race’ was over. We were dealing with enormous demands on spending, and space projects that could produce quantifiable results were the currency of the day. Instead of manned missions to the Moon, the goal was scientific observation of the Earth to improve our understanding of our ecosystem, to upgrade communications, to streamline navigation.

Nearby Space in Context

To our credit, the exploratory impulse remained, as the Pioneer and Voyager triumphs attest. But are we as a species destined to stay on the Earth or just above it in close orbit, letting our machines be our surrogates in deep space? A prolific essayist and author (Contact with Alien Civilizations (Copernicus, 2007),. Michaud is a former diplomat with global experience in US science policy. He argues here that such a limited view of manned spaceflight goes against the impulse that has long driven us toward expansion. Remember, this perspective is from the 1970s — our ‘sense of sag’ has been with us a long time:

Historically, spaceflight has had a philosophical purpose: to carry man to the stars. From early pioneers such as the Russian Tsiolkovsky and the American Goddard to contemporary writers such as Arthur C. Clarke, there was a consistent line of thinking: build the machines that will allow man to escape the confines of Earth and explore the Universe, and expand the realm of the human race. But military exploitation of the rocket and Cold War competition in space diverted our thinking, and Project Apollo ultimately left us unsatisfied because it had a short-term goal and did not lead directly to anything else. While Apollo proved that man could reach another sphere, it did not leave a step to be built upon.

saturn_v_n

Image: Saturn V at twilight and, at upper left, its target. Credit: NASA.

I agree completely with Michaud that a major problem with Apollo was the fact that it was in every sense a crash program. The US found itself, post-Sputnik, trying to catch up to a rapidly moving Soviet program that was setting new records in space almost monthly. In fact, looking back at how we pushed the envelope with missions like Apollo 8, I’m astounded that we didn’t lose more than one Apollo crew (and at that, the one we did lose died in a training accident). We put a crew on a never-before attempted journey outside Earth orbit to the Moon and back, launching Apollo 8 with a rocket that had never been used for a manned mission (Apollo 7 flew a less powerful variant of the Saturn rocket). It seemed dicey at the time, but from the perspective of half a century later, it seems like utter folly. The results were, of course, magnificent.

But while we still play Apollo 8’s Christmas Eve transmission from lunar orbit on YouTube and elsewhere, we’re trying to work out the next bold steps for the manned space program in a very tentative way. If Mars is truly our objective, it’s an objective that’s only vaguely in our plans for the 2030s, the kind of goal that all too easily recedes a decade at a time. NASA may or may not complete the Space Launch System, but are we sure what we will do with it? Elon Musk wants to die on Mars — does SpaceX and Falcon Heavy awaken any sort of Apollo-like passion?

Spaceflight and Evolution

For some of us, the old passion never died, but when it comes to the general public, we’re dealing with a case that has to be made all over again. If we take an evolutionary perspective, the purpose of human life, argues Michaud, is survival, as it is for all forms of life. How to broaden our survival options is a question of how we can upgrade our evolutionary potential. From the essay:

The tools for the improvement of our survivability are guided evolution, conflict limitation, a balanced relationship to our Earthly environment, and space flight. The first three can improve our chances anywhere that humans live, but are presently limited to the Earth’s biosphere. Only space flight can give man the option of surviving no matter what happens on Earth, of spreading the human race throughout the universe, of opening up new environments for long-term human evolution.

There’s that phrase again: ‘long-term.’ To engage the public in a program for human expansion into the cosmos is to reverse the Apollo preoccupation with crash programs and near-term wins. A rational program to achieve starflight is not likely to happen against a ticking clock. Rather, it will be an effort that sustains itself philosophically across the decades and centuries such an effort will require, crossing many human generations. It will be an exploratory and expansionist meme that remains alive because its triggers are fundamental to our nature as human beings.

Let me quote Edmund Burke on this, because the views of the 18th Century political theorist and philosopher are much to the point:

[Society] is not a partnership in things subservient only to the gross animal existence of a temporary and perishable nature. It is a partnership in all science, a partnership in all art; a partnership in every virtue, and in all perfection. As the ends of such a partnership cannot be obtained in many generations, it becomes a partnership not only between those who are living, but between those who are living, those who are dead, and those who are to be born. Each contract of each particular state is but a clause in the great primeval contract of eternal society.

Specifically, spaceflight challenges human capabilities and stimulates intellectual innovation. We are forced to develop new techniques, new materials and new forms of cooperation as we engage with a frontier more hostile than any we have known. Yes, these technologies will produce tangible results on Earth, many of which are obvious, from communications to power-generation. Mastering closed biospheres will teach us a great deal about our Earth. But we are also driven on a purely intellectual level to learn more about the cosmos, an engagement that broadens our understanding of physical law and provides context for all our science.

End of the Space Race

A goal of interstellar flight is not reached with a ‘space race’ mentality, although competition can boost interim steps — it will be interesting, for example, to see how the Western democracies react to a potential Chinese presence on the Moon. But the interstellar goal is too big to be comprehended by its individual components. It is a goal that begins in the short-term to expand our presence in the Solar System, reaping rewards like enhanced energy production and access to materials made available through exploitation of asteroids and other resources. There is in Michaud’s view a powerful encouragement to international cooperation in all this, for cutting costs if nothing else. Underlying early expansion is the reduction of existential risk, but also the possibility of diversifying the species as humans in new environments inevitably adapt.

Culturally, there is little to parallel the growth in philosophical perspective that may be gained by interacting with societies beginning to take hold in O’Neill-style colonies or on nearby planets like Mars, just as the Renaissance in Europe was bolstered by the influx of ideas and commodities from voyages of exploration. We might add a SETI imperative as well. If we do one day make contact with an extraterrestrial species, our own development off our world will likely be seen as an evolutionary step that is reproduced elsewhere in the universe. The potential growth in knowledge from such contact emphasizes space-based strategies to maximize the search.

All of these are short-term but necessary goals, each building on the other. But unlike Apollo, the species must have the broader context to work with. As Michaud writes:

Even if funding for major new projects seems unlikely now, interest must be kept alive. Industrial, labour, military, and scientific interests will continue to be important for the future of space flight, but farsighted political leaders also must mobilize public support with the excitement of exploration and discovery, of expansion and new opportunities, of the change in man’s place in the universe. They must hold out the promise of new and better lives, not just for a few astronauts, but for ordinary people.

None of this is easy to sell, but the collapse of interest post-Apollo should not be allowed to take hold as an inevitable consequence of success in space. The argument for a deep space exploration program is one that needs to be made again and again, for public sentiment changes slowly without precipitating events. But interplanetary growth must not become an end in itself. Interstellar flight, as Michaud reminds us, is open-ended. It opens before us an all but infinite frontier. That frontier is woven into our psychological and philosophical DNA as much as it is entwined with our evolutionary need for survival. We must continue to make the case.

The paper is Michaud, “After Apollo,” Spaceflight Volume 15 (October 1973), pp. 362-367.

tzf_img_post

Planets to Be Discovered in the Outer System?

Having just looked at the unusual ‘warped’ disk of HD 142527, I’m inclined to be skeptical when people make too many assumptions about where planets can form. Is our Solar System solely a matter of eight planets and a Kuiper Belt full of debris, with a vast cometary cloud encircling the whole? Or might there be other small planets well beyond the orbit of Neptune, planets much larger than dwarfs like Pluto but not so large that we have been able to detect them?

Certainly Carlos de la Fuente Marcos and Raúl de la Fuente Marcos (Complutense University of Madrid), working with Sverre J. Aarseth (University of Cambridge) think evidence exists for this proposition. The scientists are interested in how large objects can affect the trajectories of small ones, and in particular what a comet named 96P/Machholz 1 can reveal about how such interactions work. They’re focused on the Kozai mechanism, which explains how the larger object causes a quantified libration in the smaller object’s orbit, and use the Jupiter-family comet as a reference to understand the processes that may be happening in the outer Solar System.

Objects like Sedna are in extreme orbits that extend out hundreds of AU, with even their closest approach to the Sun well beyond the orbit of Pluto. And the the orbits of Sedna itself and others among the group the authors call ‘extreme trans-Neptunian objects’ (ETNOs) show enough discrepancies from what we would expect to point to the existence of larger objects affecting their orbits, just as Jupiter affects Comet 96P/Machholz 1. Carlos de la Fuente Marcos explains:

“This excess of objects with unexpected orbital parameters makes us believe that some invisible forces are altering the distribution of the orbital elements of the ETNO and we consider that the most probable explanation is that other unknown planets exist beyond Neptune and Pluto. The exact number is uncertain, given that the data that we have is limited, but our calculations suggest that there are at least two planets, and probably more, within the confines of our solar system.”

We’ve recently discovered 2012 VP113, evidently another object orbiting far beyond Pluto, whose own orbit has been suggested as evidence for an undiscovered super-Earth with up to ten times the mass of our planet orbiting in a region perhaps 250 AU from the Sun. The work on 2012 VP113 by Chadwick Trujillo and Scott Sheppard is invoked by the new research, which argues that dwarf worlds like Sedna and other ETNOs may signal the existence of a large population of similar small ETNOs. Moreover, the gravitational perturbations of the outer system evident in their orbits point to something larger, as one of the two papers on the work notes:

…the architecture of that region is unlikely to be the result of a gravitationally unperturbed environment. If there are two planets, one at nearly 200 au and another one at approximately 250 au, their combined resonances may clear the area of objects in a fashion similar to what is observed between the orbits of Jupiter and Saturn.

sheppard-VP113

Image: This is an orbit diagram for the outer Solar System. The Sun and Terrestrial planets are at the center. The orbits of the four giant planets, Jupiter, Saturn, Uranus and Neptune, are shown by purple solid circles. The Kuiper Belt, including Pluto, is shown by the dotted light blue region just beyond the giant planets. Sedna’s orbit is shown in orange while 2012 VP113?s orbit is shown in red. Both objects are currently near their closest approach to the Sun. Credit: Scott Sheppard.

So while we have no evidence for planets the size of Jupiter or Saturn moving in circular orbits in the outer system, the possibility of small planets beyond Neptune may still be in play, even if a wave of recent interest has resulted in no detections. The current authors think their results are unlikely to be the result of perturbations caused by Neptune or of observational bias, even while stressing that their work is based on the behavior of a relatively small number of objects. Can a moderate-sized planet affect objects beyond Pluto’s orbit in ways that New Horizons could detect? The authors think it’s possible, and it’s an interesting thought, particularly now that New Horizons is actually entering the first of its encounter phases for the Pluto/Charon flyby.

The papers are de la Fuente Marcos et al., “Flipping minor bodies: what comet 96P/Machholz 1 can tell us about the orbital evolution of extreme trans-Neptunian objects and the production of near-Earth objects on retrograde orbits.” Monthly Notices of the Royal Astronomical Society Vol. 446, Issue 2, pp. 1867-1873 (abstract / preprint) and de la Fuente Marcos, “Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets,” Monthly Notices of the Royal Astronomical Society Vol. 443, Issue 1, pp. L59-L63 (abstract / preprint). On 2012 VP113, see Trujillo & Sheppard, “A Sedna-like body with a perihelion of 80 astronomical units,” Nature 507 (27 March 2014), pp. 471–474 (abstract).

tzf_img_post