A Kickstarter Campaign for KIC 8462852

If the star KIC 8462852 is on your mind — and the lively and continuing comments threads on the topic in these pages suggest that it is — you’ll want to know about a new campaign to support further study. ‘Tabby’s Star,’ as it is informally known (after Tabetha Boyajian, whose work at the Planet Hunters project brought the star into prominence), continues to vex astronomers with its unusual light curves. What is causing the star to dim so dramatically remains problematic, with suggestions ranging from comet swarms to extraterrestrial engineering.

light_curves

A Kickstarter project is now in the works to support further investigation, hoping to extend an effort that has already begun. Boyajian’s team has initiated observations on the Las Cumbres Observatory Global Telescope Network, a privately run effort that maintains telescopes around the world to make sure an object can be examined continuously. Four years of Kepler data have shown us that the dips in the light curves from KIC 8462852 are not periodic, which means the monitoring needs to be continuous because we can’t predict when the next dip will come.

So far, the Las Cumbres network has given 200 hours of observing time, work that will support observations through the summer. The Kickstarter campaign intends to raise $100,000 to fund an entire year of observations, which will include a total of two hours per night. The plan is to observe the star at different wavelengths, alerting larger facilities when something interesting is happening. Variations in dimming at particular wavelengths can tell us much about what kind of material is causing the effect, perhaps supporting a hypothesis like cometary gases or dust.

Jason Wright and Kimberly Cartier (Penn State), calling KIC 8462852 ‘the most mysterious star in our galaxy,’ looked toward the next round of study in a recent essay in The Atlantic:

When the star dims again, we will use telescopes around the world to measure how much the star dims at different wavelengths. Since different substances have characteristic absorption patterns, this will tell us the composition of the intervening material. For instance, if it dims much more at ultraviolet wavelengths than in the infrared, we will know dust is to blame. If we see the characteristic pattern of cometary gases, that will help confirm the cometary hypothesis.

And if we see the same brightness changes at all wavelengths? That would indicate that whatever is blocking the starlight is big and opaque—inconsistent with comets, but consistent with the alien megastructure hypothesis.

The intense interest in KIC 8462852 created a flurry of work among amateur astronomers, including dozens working with the American Association of Variable Star Observers. We do have data from the AAVSO effort so far, but as Boyajian notes in the Kickstarter materials, there is a good deal of scatter in the measurements depending on observer and equipment.

aavso

Image: A graph showing brightness measurements (in magnitude) for KIC 8462852 contributed by over 50 AAVSO observers. Although the star displays constant brightness during this time, observer-to-observer offsets smear out any signal of a dip. Credit: AAVSO.

The benefits of using the Las Cumbres network are clear:

If just AAVSO data are used alone, the myriad of offsets and random sampling from many observers (even if greatly reduced by giving more specific instructions to the observers) may always obscure the fine details of the brightness behavior of our star. That is, with a patchwork of observers, dips ~5% or smaller may not be recognizable in near-real-time with AAVSO data (and the Kepler data show there are very few dips greater than this level).

Not all is lost however. The LCOGT data will have the dense sampling with a single consistent system, so dips below the 1% level can be spotted. This also means that we can use the LCOGT data as a very valuable training set to help amateur observers to improve their techniques. By educating amateur observers in this way, their data can be made more precise and can be corrected for systematic offsets. And by accomplishing this, we will greatly increase the number of observations to be used in our final analysis.

Thus we get not only continuous monitoring of KIC 8462852 but a much more finely calibrated way to look for future dips in the light curve of the star. You can see, too, that this is the kind of project to which a fast and relatively inexpensive campaign like this one is ideally suited. Getting observation time on large facilities is always tricky because of the high demand, and private observatories are usually paid through grants, most of which don’t make it through the funding process. When you need a lot of telescope time to look at an anomaly like KIC 8462852, crowdsourcing turns out to be the best and perhaps the only viable option.

A search through the archives here will pull up the numerous articles about KIC 8462852, but I’d also urge you to dig into the comments section, particularly for the more recent posts, as the discussion has been lively. For overall background, you’ll want to have a look at this thorough explanation of what we’ve learned about the star so far from Paul Carr, who is also active in the comments threads here. Paul’s Dream of the Open Channel is a site you’ll want to follow on a regular basis as we continue to look at this puzzling star. He is also an active podcaster on SETI and related matters, with links provided on the Open Channel site.

As for the Kickstarter project, I see that as of Monday morning, it has raised close to $20,000, with 25 days to go toward the $100,000 goal. The Las Cumbres observing campaign offers us precious new data to add to the Kepler cache and the continuing AAVSO effort. As to Kepler itself, we’re now deep into the K2 mission and KIC 8462852 is no longer observable. To find out when the next dips will occur and test theories about what may be happening here — ringed planets? dust clouds? cometary debris? — Las Cumbres looks like our best bet. Let me encourage you to contribute what you can as we get this observational campaign into gear.

tzf_img_post

Towards Producing Food in Space: ESA’s MELiSSA and NASA’s VEGGIE

Before we can go to the stars we’ll need to build a robust infrastructure in our own Solar System. While most attention seems to be devoted to propulsion issues, I’m convinced that an equally critical question is how we can create and sustain closed-loop life support systems for such missions. Our point man on this is Ioannis Kokkinidis, who brings a rich background from his Master of Science in Agricultural Engineering (Agricultural University of Athens) and Mastère Spécialisé Systèmes d’informations localisées pour l’aménagement des territoires from AgroParisTech and AgroMontpellier, along with a PhD in Geospatial and Environmental Analysis from Virginia Tech. Here Dr. Kokkinidis discusses what has been done so far in the matter of growing foods in space, and takes us back to a mission that might have been, a manned flyby of Venus. As Ioannis notes, getting space foods up to the sumptuous standards of Greek cuisine will indeed be a challenge, but we’re at least making progress.

by Ioannis Kokkinidis

Introduction

ioannis2

A few years ago the Greek press was buzzing with a story about the European Space Agency asking two French caterers to create a meal for Mars based on nine foods: rice, onion, tomato, soybeans, potatoes, lettuce, spinach, wheat and spirulina. The news story was the first time I was exposed to the ESA’s MELiSSA project, which aims to produce food through an artificial ecology for solar system colonization, including space stations and spaceships. A somewhat related American project to grow food in microgravity is the VEGGIE project, which has recently made headlines by growing several plants which were consumed by astronauts on the International Space Station. The subject of this post is to describe two leading edge projects to produce food in a space environment. I am not and have never been affiliated with either of the projects, I have never met any of the people associated with either project nor is anyone asking me to publicize these projects. I am simply a learned amateur, albeit one with graduate degrees in agronomy who is fascinated by the projects and their potential.

MELiSSA

The Micro-Ecological Life Support System Alternative (MELiSSA) initiative is a European Space Agency project with almost 30 years of history behind it. Its origin lies in the flight of two tubes of nostoc algae in a recirculating system to space on the Chinese FSW-0 No 9 recoverable mission in 1987. In 1989 the MELiSSA Foundation was formed to create a closed loop artificial ecosystem for long spaceflights, based on aquatic ecosystems. MELiSSA aims to replace the current generation of mechanical Environment Control and Life Support Systems (ECLSS) with a new one based on biology, which will not only remove metabolic waste from the various streams (air, water) but also produce food in the process. The tool to accomplish this task is the MELiSSA cycle.

melissa

Fig 1: The MELiSSA cycle © ESA from http://www.melissafoundation.org/. The cycle has five compartments.

Compartment I: The liquefying compartment

This compartment gathers all the organic waste created in the spaceship and aims to convert it into ammonium, CO2, volatile fatty acids and minerals. For biosafety and efficiency reasons this compartment operates in thermophilic conditions (i.e. 55 C). The main biological functions involved are proteolysis, saccharolysis and cellulolysis. While saccharolysis is trivial, after all sugars are a main biological source of energy for most species, proteolysis and cellulolysis have proven more difficult to optimize, with proteolysis having an efficiency of 70% and cellulolysis of 44% in the cycle. Considering that despite billions in public and private investment in Europe and the United States to increase cellulolysis efficiency, cellulosic ethanol has not entered the market in meaningful quantities, these efficiency figures are pretty decent for the current state of technology.

Compartment II: The photoheterotrophic compartment

In this compartment volatile fatty acids, ammonium and minerals from component I are further broken down by Rhodospirillum rubrum bacteria into minerals and ammonium. The bacterium has proven very efficient in the process. For more, see this brief video.

Compartment III: The nitrifying component

This compartment has as feedstock urine from the crew, ammonium from compartment II and oxygen from compartment IV. It uses a mix of Nitrosomonas and Nitrobacter bacteria to oxidize ammonium into nitrates, which plants prefer as their nitrogen source

Compartment IV: The photoautotrophic compartment

This compartment is intended is to grow actual food and produce oxygen for the crew. It is divided into two parts: the algae compartment and the higher plant compartment.

  • IVa: The algae compartment

    In the current iteration of MELiSSA, the cyanobacterium Arthrospira platensis has been selected as the organism grown. This is one of two species (the other being Arthrospira maxima) that are known colloquially as spirulina. Several photobioreactors with this bacterium have been built and a predictive model has been created and validated experimentally.

  • IVb: The higher plant component

    This component is intended to provide both food and water for the crew. While several crops have been evaluated in the course of the project, 8 have been selected: wheat, tomato, potato, soybean, rice, spinach, onion and lettuce. Currently the status of this component is far less mature than the algae component, they are still compiling the biomass production rates, nutrient and mineral compositions of the plants based both on outside work and their own research.

Component V: The crew component

This is simply the crew component of the spaceship, composed of the astronauts and cosmonauts who consume the food, produce CO2, urine and other waste which is sent to the components of the cycle.

Status

Like all ESA programs, the intention of MELiSSA is not only to provide technology for space exploration but also for applications on earth. It has helped explored the concept of closed loop ecosystems, which are critical to colonize other bodies but also to help understand how earth ecosystems work. A pilot plant that uses rats as the trial crew (component V) has been running since 2009 at the School of Engineering of the Autonomous University of Barcelona. The greywater treatment plant of the Concordia station in Antarctica uses MELiSSA technology while a sensor for CO2 monitoring of sparkling wine has been commercialized. The BIOSTYR© bacterial support for wastewater treatment, commercialized by Veolia, has been derived from MELiSSA compartment III research. Andreas Mogensen conducted two MELiSSA related experiments during Expedition 44 to the ISS, consuming spirulina infused snack bars created by MELiSSA which he also shared with his fellow astronauts in the DEMES experiment, and keeping an eye on some micro-organisms and how they recycle our waste in space in the Bistro experiment.

The most recent news item associated with MELiSSA was the opening of a new facility called AlgoSolis to cultivate algae at an industrial scale in Saint-Nazaire in France. It seems that it is the intention of the project to construct a MELiSSA loop in the ISS or a future space station, though the concept still requires technological maturation. This is a very interesting project to follow in the future.

VEGGIE

The Vegetable Production System (VEGGIE) experiment is an experiment of NASA’s Human Exploration and Operations Mission Directorate to grow salad crops in the International Space Station run by the Kennedy Space Center and Orbital Technologies Corporation (ORBITEC) of Madison WI, a subsidiary of Sierra Nevada Corporation. It is not the first plant growth experiment in space, the Bulgarian/Russian SVET SG (Space Greenhouse) experiment grew various plants on a series of experiments aboard the Mir space station in the 1990’s, several of those in partnership with NASA. These however were biological experiments intended to study plant growth in microgravity; cosmonauts were not supposed to consume the plants though some have admitted to nipping bits. The Veggie experiment intends to grow fresh food for astronaut consumption on the ISS. So far the experiment has had three phases, named Veg-01, Veg-02 and Veg-03 and has been conducted during Expeditions 35/36, 39/40, 41/42, 43/44, 45/46, 47/48 and 49/50.

Overview

VEGGIE builds on heritage from the SVET SG experiment on Mir, the Biological Production System of Expedition 4 and the failed efforts of Expedition 2 astronaut Jim Voss and Expedition 6 astronaut Don Pettit to grow plants on old food bags (see http://www.orbitec.com/documents/Veggie-APH.pdf). It is made of a plant growth chamber which is made of modular planting pillows, an LED bank for lighting and a fan for humidity control. It weighs 7.2 kg and has external dimensions 53 by 40 cm (=0.212 m2) with a root mat of 0.16 m2 and a growth height of 45 cm. It provides lighting and nutrients, having a 2 l fluid reservoir, but depends on the ISS ECLSS for temperature and CO2. It draws 115 Watts of peak power, is able to support different day/night lengths for experiments and contains a data logger that records temperature, humidity and pCO2 (see http://spaceflight101.com/iss/veggie/). The plants grow on the planting pillows, containing the substrate, fertilizer and seeds, which are of single use and arrive in ready-to-activate form from earth. It is deployed in an EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack.

Veggie hardware validation test (Veg-01)

Veg-01 had a variety of goals including a shakedown of the system to see if the experimental apparatus works in space. VEGGIE was delivered to the ISS by the SpaceX CRS-3 mission launched on April 18 2014. Expedition 39 flight engineers Steve Swanson and Rick Mastracchio installed it at the European Columbus module on May 7 2014 and activated it the next day. They used 6 planting pillows of ‘Outredgeous’ red romaine lettuce, having a substrate of two different sizes of arcillite (3 of one and 3 of the other), a calcined clay media used on baseball fields that included fertilizer. Two sizes were used so as to compare root zones between the two media, so as to determine water and root distribution for future investigations.

The pillows then received about 100 milliliters of water each to initiate plant growth. 24 hours after activation on the ISS an identical VEGGIE experiment was activated on the ground at KSC to serve as control (see also http://spaceflight101.com/iss/veggie/). Steve Swanson, who by that time had become the commander of Expedition 40, harvested VEGGIE on June 10, 33 days after planting. The next day the control experiment was harvested on the ground. Two plants on the ISS experiment were lost due to drought stress. The tops of the surviving lettuce were cut away from the plant pillows and swabbed for microbial samples. The pillows and bellows also were swabbed.

The plants, sample swabs and a couple of the plant pillows were packaged and placed in the ISS’ minus-eighty-degree freezer for storage. The crop, along with the pillows and sample swabs were returned from the ISS on the SpaceX CRS-4 mission which splashed down on October 25 2014. The lettuce was analyzed for microbes on the ground and found to be within safe limits, for that matter it had a lower microbial count than what is usual for lettuce on the market. A second crop was activated in early July 2015 by Commander Scott Kelly, who had arrived on the ISS on March 28 2015. Thirty three days later they were harvested in turn, having lost only one plant and on August 10 2015 expedition 44 astronauts wiped the lettuce leaves with citric acid-based, food safe sanitizing wipes before consuming them raw. See http://www.nasa.gov/mission_pages/station/research/news/meals_ready_to_eat.

Veg-02

There is conflicting information online whether Veg-02 is just the zinnia experiment (described below), if it also included the second lettuce experiment mentioned in the previous section or for that matter if there even was a Veg-02 experiment, rather than skipping the number and moving directly from Veg-01 to Veg-03. In any case what follows is a detailed description of the zinnia experiments compiled from available online sources.

The planting pillows with the ‘Profusion’ zinnia seeds for the Veg-02 experiment were carried to orbit along with the rest of the VEGGIE apparatus on the SpaceX CRS-3 resupply flight. These plants received quite a bit of attention from Commander Scott Kelly during his Year in Space mission; he took care of the plants and tweeted about them several times. On November 16 2015 astronaut Kjell Lindgren activated the experiment, which was the first flowering plant experiment grown on the ISS, 3 days after activation of the control experiment at KSC. The experiment was composed of a total of four plants and lighting was set on a photoperiod of 10 hours day and 14 hours night in order to stimulate flowering.

The plants started to grow [http://www.nasa.gov/image-feature/first-flower-grown-in-space-stations-veggie-facility] but two weeks into their growth period, NASA astronaut Kjell Lindgren noted that water was seeping out of some of the wicks – the white flaps that contain the seeds and stick out of the tops of the plant pillows. The water partially engulfed three of the plants. Within 10 days, scientists noted guttation on the leaves of some of the plants. Guttation is when internal pressure builds in the plants and forces excess water out of the tips of the leaves. It occurs when a plant is experiencing high humidity.

Additionally, the zinnia leaves had started to bend down and curl drastically. This condition, called epinasty, can indicate flooding in the roots. The anomalies all pointed to inhibited air flow in the plant growth facility that, when coupled with the excess water, could have the potential to cause major problems to the crop. Commander Kelly, who took over the experiment after Lindgren returned on Earth December 10, noted that the plants had grown a mold. On December 22nd, after late night consultations with the ground crew, he cut the two affected plants off and put them in cold storage for return to Earth. Then he increased the fan speed to reduce humidity. Scott Kelly, though, reported on Christmas Eve that the reverse problem was currently happening, the plants were getting too dry. Watering was scheduled for December 27, but despite the advice of the ground crew, he decided to take the initiative and water them on Christmas Eve. He then tweeted one of his most memorable tweets.

By January 8 the flowers were on the rebound, leading to another tweet.

while on January 12 they had begun to flower. The zinnia plants on the ground were harvested on February 11 while those in space on February 14, Valentine’s Day. See http://www.nasa.gov/mission_pages/station/research/news/flowers.

Veg-03

The aim of the Veg-03 experiment is to build on the success of the previous VEGGIE experiments by growing ‘Tokyo Bekana’ cabbage along with ‘Outredgeous’ lettuce as food crops. Plants are again to be grown in two different sizes of arcillite substrate with specialized fertilizer. Eighteen planting pillows (12 of cabbage, six of lettuce) were prepared at Kennedy Space Center on early April 2016, by gluing the seeds using guar gum to the Teflon and Kevlar envelopes [https://blogs.nasa.gov/kennedy/2015/06/18/future-lettuce-planting-the-seeds-for-veg-03/]. They were then packed in gas-impermeable bags and then into cargo transport bags so as to be shipped on the ISS with the SpaceX CRS-8 mission to the ISS [https://blogs.nasa.gov/kennedy/2016/04/08/veg-03-plant-pillows-readied-at-kennedy-space-center-for-trip-to-space-station/]. First lady Michelle Obama planted cabbage seeds from the same batch that were shipped to her from KSC at the White House vegetable garden on April 5th 2016. She was assisted in that task by NASA Deputy Administrator Dava Newman, astronaut Cady Coleman, Brad Carpenter, chief scientist for space life and physical sciences at NASA, Gioia Massa, NASA Veg-03 science team lead at Kennedy and kids from Bancroft Elementary School and Harriet Tubman Elementary School [http://www.nasa.gov/feature/nasa-s-veg-03-seeds-planted-in-first-lady-s-white-house-garden]. SpaceX CRS-8 launched on April 8 2016, was captured on April 10 and the experiment is awaiting activation. Future plans for VEGGIE include growing dwarf tomato seeds in 2018.

Overview

Despite its modest size VEGGIE is the largest plant growth chamber ever launched to space. So far over three growth periods it has produced only one lettuce crop that was consumed by the inhabitants of the ISS following a 33 day growth period. Alas I did not find a news item on whether it was actually all consumed in one or several meals. If we wished to scale the experiment to producing a significant fraction of the food consumed by the astronauts and cosmonauts in space, as is the purpose of the MELiSSA experiment, we have the issue that the ISS is simply not big enough, despite being the largest space station in history. The complete length of the ISS modules from one edge to the other is 51 m. Assuming a 4 m average module diameter this would mean an opening area of 200 m2.

Under intensive agriculture we would most likely need on Earth around 250 m2 per inhabitant per year, though this needs to be validated in space conditions. But the ISS is three dimensional; we could say fit throughout the ISS modules enough VEGGIE modules to have sufficient growth area in the volume provided, if there were enough EXPRESS racks. Other issues would still need to be resolved. If a single 0.212 m2 VEGGIE module consumes 115 W of peak power, then 250 m2 of VEGGIE modules should consume 135,6 kW of power. The ISS power system produces, according to Wikipedia, between 84 and 120 kW of power on each orbit. Furthermore 1000+ Veggie modules would require quite a bit of astronaut attention and time that might not be available: Scott Kelly was aware of the rot issue in the zinnia experiment on the single Veggie module he was tending at least two days before he intervened, but he had to delay his intervention due to an unplanned spacewalk. Growing food in space requires very significant amounts of space and human resources, which is why so far space food has been grown, prepared and sent to space from Earth.

Cooking in Space

After growing food in space we would most likely need to cook it. While Veggie is intended to grow only raw food, MELiSSA intends to produce raw materials for balanced, cooked, or at least somewhat prepared, meals. This raises the issue of cooking in space, especially under microgravity conditions, which is still in a rather primitive form. Expedition 18 astronaut Sandra Magnus has produced a slideshow and an article of her cooking efforts in space. I admit that I am showing my cultural bias as a Greek here but with the exception of putting onions and garlic with olive oil at the Russian food warmers for several cycles, the rest of her cooking would not qualify as cooking in my book but rather as recombination of already partially prepared foods. Then again I have to admit that not everyone’s baseline for cooking is their grandmother spending two or three hours preparing lunch in the kitchen followed by a couple of hours of baking in the oven to cook it.

Moving from having raw produce to fully prepared cooked food requires several steps that have yet to be demonstrated in space. Let us assume that we have grown wheat and we wish to create a taco shell, a foodstuff quite popular with ISS astronauts and cosmonauts. We would need to separate and shell the wheat grains from the rest of the plant. Then we would need to mill the grains into flour which is a critical step in more ways than one: we depend on modern mills to separate several pathogens from the seeds and protect us from, say, ergotism. Then we would need to turn the flour into dough in microgravity, which is not very conductive to mixing materials that are in different phases. Next we would shape the dough and put it into an oven for cooking, which most likely would have to look like a toaster oven so as to avoid having the shaped dough wander inside the oven along with the convection currents. Then hopefully we would have a taco to fill with what we desire. As we can see we still need to prove that several of these steps can be achieved under microgravity conditions.

Growing space food in perspective

One of the offshoots of the space race was the Apollo Applications Program (AAP), an effort to use the hardware developed during the Apollo program in other uses. It eventually studied three major applications: the Orbital Workshop, a permanent Lunar Base and a Manned Venus Flyby. A central concept of the AAP was the Wet Workshop: The upper stage of either a Saturn IB or a Saturn V (the S-IVB stage) would be launched to space, fire its engines to reach the appropriate trajectory, then the remaining fuel and oxidizer would be vented and the astronauts would move into the tanks after sealing them behind them using tools launched with them placed at the location where the Lunar Module would be during Apollo lunar missions.

In the end only the Orbital Workshop was launched in the form of Skylab, which was a Dry Workshop: It was launched already preconfigured as a habitat from Earth. Skylab can be seen as a prototype for the Manned Venus Flyby spaceship, which after all has been called “Skylab to Venus”. It is unfortunate that in the 5 decades since, very few spaceship plans can claim to have reached the level of maturity that Manned Venus Flyby reached with the launch of Skylab. Only the Soviet Mars Train, released a few years before the collapse of that country, can also claim to be based on space tested systems, more specifically the Mir Space Station and the Russian segment of the ISS which was based on Mir/Mars Train designs. While some of the NASA Mars plans have talked about the use of Destiny derived modules, so far only the Manned Venus Flyby has had a plausible plan using existing hardware in production at the time of its planning. For a review of Mars plans see http://history.nasa.gov/monograph21.pdf.

Skylab holds to this day the record for food weight and portions packed in a single launch. Skylab, like the first generation Salyut stations, lacked the ability to receive unmanned resupply missions and while some food was carried along with the crews, most of the food consumed aboard was carried to space during the launch of the Space Station. More specifically, Skylab was launched with approximately 2500 lbs of food packages and another approximate 350 lbs were launched along with the astronauts, mostly with Skylab 4. I use imperial units in this section because that was what NASA used at the time in the documentation.

The workshop included 5 freezers each weighing about 60 lbs (without the food inside them), 22 unrefrigerated food assemblies at 90 lbs each and 3 overage containers at 30 lbs each (see http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760011703.pdf). Adding all these numbers up totals 2850 lbs of food and 2370 lbs for the containers, and a system total of 5220 lbs. Considering that the total weight of Skylab without the Apollo CSM at launch was 150,350 lbs, the mass fraction of the food system was 3.5% of total weight, including the food that was later launched. Food without the support equipment was 1.9% of total Skylab weight. Originally Skylab food was packed for 140 days of operation; in the end the three manned missions lasted 171 days and they kept a 10 day contingency margin of food for the last flight in case weather delayed the return of the last crew. My understanding is that when Skylab 4 landed only the contingency food was left on board the station.

The Manned Venus Flyby spacecraft was to last for 400 days. The planners allotted 1800 lbs for the food for the 3 astronauts, a figure that does not include the weight of its containers. Furthermore, the thrown weight of the whole MVF assembly stack was 106,775 lbs of which 37,710 was for the Environmental Support Module and 34,600 for the S-IVB stage and the Instrument Unit [https://www.devin.com/cruft/19790072165_1979072165.pdf]. This would give a food fraction of 1.7%, as opposed to Skylab’s 1.9%.

Now on Skylab the Orbital Workshop weighed 62,500 lbs, IU 4,600 lbs with a total weight (including the 22,200 lbs Apollo Telescope Mount but not the Apollo CSM carrying the astronauts) of 150,300 lbs. If for 181 days of food supplies Skylab need 2850 lbs of just food, for 400 days of supplies they would need 6300 lbs. While it is true that when MVF was studied we had little idea how much food astronauts and cosmonauts needed in space, the differences in mass between the MVF plans and what was their equivalent weight on Skylab offer a cautionary tale on planning without having built any actual equipment. It is rather difficult to find figures online on how much weighs the food that each ISS astronaut or cosmonaut consumes every year, but my understanding is that since the 1970’s actually food weight consumed is more or less the same but packing material weight has significantly decreased.

My foray into the Apollo/Skylab era is intended to show just how small a fraction of spaceship weight is taken by the food system. I have not performed this sort of analysis with later spaceship plans, assuming they were ever that detailed, but even for a two year trip in space (say to Jupiter) food weight should not be a showstopper. Growing food would still be beneficial for psychological reasons and to supply vitamins in a more pleasant form than pills. For long term interstellar travel, when we surpass a trip length of a decade, which is generally the maximum that canned foods survive, growing food will become critical. The projects mentioned in this post will probably be among the ancestors of the systems and their designed used on these starships.

tzf_img_post

Looking for Life Around Red Giant Stars

I suppose the most famous fictional depiction of the Sun as it swells to red giant stage is in H. G. Wells’ The Time Machine, in a passage where the time traveler takes his device by greater and greater jumps into the remote future. This is heady stuff:

I moved on a hundred years, and there was the same red sun–a little larger, a little duller–the same dying sea, the same chill air, and the same crowd of earthy crustacea creeping in and out among the green weed and the red rocks. And in the westward sky, I saw a curved pale line like a vast new moon.

‘So I travelled, stopping ever and again, in great strides of a thousand years or more, drawn on by the mystery of the earth’s fate, watching with a strange fascination the sun grow larger and duller in the westward sky, and the life of the old earth ebb away. At last, more than thirty million years hence, the huge red-hot dome of the sun had come to obscure nearly a tenth part of the darkling heavens.

Wells would have had no real idea of the chronology here, but we now know that in several billion years, the Sun will become a red giant, with effects upon our own planet’s habitability showing up long before that. Because the inner planets will be consumed when this happens, and Earth itself rendered a rocky hellscape, it’s easy to assume that life in our Solar System will come to an end. But Ramses Ramirez and Lisa Kaltenegger (Carl Sagan Institute at Cornell University) beg to disagree. Their new paper paints the possibilities of post red-giant habitable zones.

Just where is the habitable zone located in the later stages of a star’s evolution? To find out, the researchers have computed the luminosities of stars as they move off the main sequence, expanding through the Red Giant Branch and Asymptotic Giant Branch. They work with a grid of stars ranging all the way from A5 down to M1, with calculations starting at the beginning of the red giant phase. Here the stellar luminosities increase in stars of the Sun’s mass and greater, decreasing after the helium flash before again increasing along the Asymptotic Giant Branch.

For stars that are less massive, stellar winds during the Red Giant Branch phase reduce their masses sharply, enough to prevent them undergoing the Asymptotic Giant Branch phase. The fascination here — and this paper should provide scenarios for more than a few science fiction writers — is watching what happens to the habitable zone given high stellar winds, atmospheric erosion and an expanding central star. We might take our own Solar System as a starting point, since while life on Earth would be devastated, prospects further out begin to open up.

SUN_Habitable_Zones460

Image: Normal yellow stars, like our Sun, become red giants after several billion years. When they do, the planetary habitable zone changes, as analyzed in a new paper by Lisa Kaltenegger and Ramses Ramirez. Credit: Wendy Kenigsburg / Carl Sagan Institute.

Consider this: Over 99.9 percent of the water in the Solar System is found beyond the so-called ‘snowline,’ meaning that the outer system could offer the potential of biological evolution. As Ramirez and Kaltenegger calculate post-main sequence habitable zone distances for the stars on their grid, they show that a planet at Jupiter’s distance could remain in the newly warmed, much more distant habitable zone of a G-class star for hundreds of millions of years. We don’t know how long it takes life to evolve, but this may be long enough for the process to start, given that life on Earth is now thought to have begun about 3.8 billion years ago, and perhaps even earlier.

But here is a key point: Evolution in a post-main sequence phase may not be necessary. One possibility is that life could have started in an early habitable environment, perhaps before the star ever reached the main sequence. Moving below the surface as conditions changed, it could emerge once again after the star goes into its red giant phase. Another possibility: Life could evolve below the surface on a world outside the traditional habitable zone, only emerging once the post-main sequence phase begins. Let’s look more closely at this issue, as it has implications for the detection of life in other solar systems:

In our own Solar System, if life exists in the subsurface ocean of icy exo-moons like Europa or Enceladus, this life may be exposed during our Sun’s red giant branch phase (RGB), during which the post-MS HZ will move outward to Jupiter’s orbit, allowing atmospheric biosignatures to potentially become remotely detectable at those orbital distances. For planets or moons as small as Europa, such atmospheric signatures would be short-lived due to the low gravity. But for super-Europa analogues or other habitable former icy planets such atmospheric signatures could build up. Higher disk densities around massive stars may translate into more massive objects than in our Kuiper belt region (~ 3 times the terrestrial planets; Gladman et al., 2001). Such planets may be present around current post-main-sequence stars.

In a 2014 paper, Ramirez and Kaltenegger looked at habitable zone boundaries in stars that had not yet reached the main sequence, considering the possibilities for the detection of biomarkers, which obviously affect how we choose the stars we target for observation. Now we’re moving into the later stages of a star’s evolution, finding that habitable zone limits evolve throughout this period thanks to changing luminosity and stellar energy distribution. The notion of a habitable zone expands to include multiple periods and places in a star’s long development.

We learn that the orbital distance of the post-main sequence habitable zone changes over time for all the stellar types studied. Our Sun, for example, shows initial post-MS habitable zone limits of 1.3 and 3.3 AU respectively, but these expand outward to 46 and 123 AU by the end of the Red Giant Branch phase, covering a timespan of about 850 million years. During the Asymptotic Giant Branch phase, the habitable zone edges move from 5 and 13 AU to 39 and 110 AU, during a timespan of some 160 million years.

The coolest stellar type the authors consider is an M1 dwarf, which can sustain a planet in a post-main sequence habitable zone for about 9 billion years (assuming metallicity levels like our Sun). A planet orbiting an A5 star, the hottest the researchers consider, can only remain in the post-MS habitable zone for tens of millions of years. A planet around a post-MS Sun may have up to 500 million years. These numbers assume an unchanging orbital radius, though the authors note that as the star loses mass, orbits move outward, thus increasing time in the HZ.

Habitable Zone as Giant

Image: The?distance?of?the?habitable?zone?as?a?small?red?star?ages.?Credit:?Ramses?Ramirez.

It’s interesting to consider that cool K stars and the even cooler M1 stars under discussion here would not yet have had time to reach the post-MS phase, but they’re a useful part of the model as we try to expand our notions of astrobiological detectability. In our own system, icy moons that might currently have life beneath their surfaces are not massive enough to maintain a dense atmosphere once they are heated. But more massive moons or Earth-mass planets could well be found at equivalent distances in other solar systems. The paper thus calculates how long Earth-mass bodies would retain their atmospheres at the location of Mars, Jupiter, Saturn and the Kuiper Belt in our own Solar System. Let me turn to the paper on this point:

Planetary atmospheric erosion during the post-main-sequence is mainly due to high stellar winds produced by the stellar mass loss, which can erode planetary atmospheres. Super-Moons to super-Earths’ atmospheres can survive the RGB and AGB phase of their host star – except for planets on close-in orbits. Even super-moons survive at a Kuiper-belt equivalent distance for all grid stars to the end of the AGB phase.

So while it’s natural enough to look for life around stars comparable to the Sun in type and age, this work argues that we should widen our parameters, considering that we have a ‘red giant habitable zone’ that can last for long enough to allow life to emerge. In terms of life’s future in the universe, it’s remarkable that a small red star of M1 class could sustain a habitable zone for up to 9 billion years in a phase of its life when we would expect life to be destroyed. In this Cornell University news release, Ramirez refers to a planetary system’s ‘second wind,’ a fascinating metaphor indeed as we model the future evolution of living worlds.

The paper is Ramirez and Kaltenegger, “Habitable Zones of Post-Main Sequence Stars,” Astrophysical Journal Vol. 823, No. 1 (16 May 2016). Abstract / preprint.

tzf_img_post

Moons of the Outer Dwarf Planets

Yesterday’s post on the dwarf planet 2007 OR10 brought comments asking why an object this large hasn’t yet been named. Actually it has been, but only briefly. It was Meg Schwamb, then a graduate student of Caltech’s Michael Brown, who discovered 2007 OR10, and Brown quickly gave it the nickname Snow White — as the seventh dwarf Brown’s team had discovered, the name seemed made to order. What derailed the nickname was the realization that 2007 OR10 is not white but red, and as we saw yesterday, one of the darkest known Kuiper Belt objects.

Schwamb herself was quoted in this JPL news release on the matter:

“The names of Pluto-sized bodies each tell a story about the characteristics of their respective objects. In the past, we haven’t known enough about 2007 OR10 to give it a name that would do it justice. I think we’re coming to a point where we can give 2007 OR10 its rightful name.”

We’ll see just what that rightful name is. Remember, too, that 2007 OR10 is now known to be just larger than Makemake, making it about a third smaller than Pluto. As to Makemake itself, a dwarf planet named after a creation deity of the Rapa Nui people of Easter Island, we learned in late April that it has a small, dark moon about 160 kilometers across. That one is designated S/2015 (136472) 1 but is referred to informally as MK 2. The moon is going to be useful as astronomers study the density of Makemake, just as Charon helped us understand Pluto.

makemake_moon

Image: This Hubble Space Telescope image reveals the first moon ever discovered around the dwarf planet Makemake. The tiny moon, located just above Makemake in this image, is barely visible because it is almost lost in the glare of the very bright dwarf planet. The moon, nicknamed MK 2, is roughly 160 kilometers wide and orbits about 21,000 kilometers from Makemake. Makemake is 1,300 times brighter than its moon and is also much larger, at 1400 kilometers across. Credit: NASA, ESA, A. Parker and M. Buie (Southwest Research Institute), W. Grundy (Lowell Observatory), and K. Noll (NASA GSFC).

On to Haumea

These are good times for those of us interested in small worlds at the edge of the Solar System, especially when you factor in the continuing dataflow from New Horizons. And now we have new analysis of the dwarf planet I would most like to get an orbiter around, the ever intriguing Haumea. Its unusual shape — Haumea is a flattened ellipsoid with its longest axis about 2000 kilometers across — is likely the result of an ancient collision. It’s also highly reflective, with a surface evidently covered with crystalline water ice (cryovolcanism?).

Rotating every 3.9 hours, which is faster than any other large object in the system, Haumea was discovered to have a dark spot on its otherwise bright surface in 2009, an area evidently richer in minerals and organic compounds than surrounding areas. The dwarf planet also has two moons, known as Hi?iaka (the outer satellite) and Namaka (the inner), and is evidently the parent body of a family of icy fragments with similar albedo now orbiting the Sun. Just how the moons formed and what we can learn about the composition of Haumea itself make this an intriguing object for those trying to piece together the early history of the outer system.

Both Pluto and Haumea have multiple moons, while Eris and Makemake have a single moon each. But what Haumea seems to lack in comparison to Pluto are small icy moons like Pluto’s Nix, Hydra, Kerberos and Styx. In a new paper, Luke Burkhart (Harvard-Smithsonian CfA) and colleagues look at Haumea via Hubble data taken in July of 2010, in a search for additional moons that came up dry. The work sets strong limits on the size and location of any possible undiscovered moons, with implications for the formation of the satellite system.

From the paper:

As the properties of the dwarf planet satellite systems differ significantly, it was not anticipated that Pluto’s small satellites would necessarily find counterparts around Haumea, though it seems that Makemake may have a satellite of similar size (Parker et al. 2016). Our null result affirms that, for the time being, Pluto is the only known KBO with a retinue of small satellites, though such could have been detected or nearly detected around all four dwarf planets. This implies that the satellite systems may result from somewhat different formation pathways, although all the dwarf planet satellites are probably connected with a collisional formation. Pluto’s small satellite system may be connected with Charon since, from a dynamical perspective, the other dwarf planet satellites are more like small moons compared to the near-equal-sized Pluto-Charon binary.

Darin Raggozine (Florida Institute of Technology) says that despite some similarities, the satellite systems we’ve observed around the outer dwarf planets must have had different formation processes. Both Pluto and Haumea have planetary scientists searching for answers. “There is no self-consistent formation hypothesis for either set of satellites,” adds Raggozine in this FIT news release.

We also learn that moons the size of Pluto’s Nix and Hydra would have been detected if present at Makemake, and in fact would be near the detection threshold even for distant Eris. The paper notes that improving these detection limits would take extensive observations, a task perhaps suited to the James Webb Space Telescope. What we do know is that no satellites larger than about 8 kilometers in radius are found between 10,000 and 350,000 kilometers of Haumea. This is the region which, around Pluto, contains Charon and the four smaller satellites.

DwarfPlanetSystemsCompare1-e1463425512248

Image: A comparison of the four icy dwarf planets and their moons, with all objects to scale. These large bodies in the outer Solar System share many similarities, but one difference is that only Pluto has a collection of tiny moons (shown near the center). Research from Luke Burkhart at Yale University, Darin Ragozzine at Florida Institute of Technology and Michael Brown at Caltech found that Haumea, a dwarf planet on the edge of our Solar System, doesn’t have the same kind of moons as its well-known cousin Pluto. Credit: D. Ragozzine (FIT)/NASA/JHU/SwRI.

The paper is Burkhart et al., “A Deep Search for Additional Satellites around the Dwarf Planet Haumea” (preprint).

tzf_img_post

New Work on Dwarf Planet 2007 OR10

Although we always think of Kepler — and its successor mission K2 — as an exoplanet observatory, the spacecraft has also been put to work on objects much closer to home. Enter 2007 OR10, a dwarf planet that is currently about twice as distant from the Sun as Pluto. The Kepler instrument is, of course, fine-tuned for spotting the minute variations in light caused when a planet passes in front of a distant star. But that makes it an excellent tool for studying 2007 OR10, whose dim light and red color have proved difficult to parse by other instruments.

Kepler, though, is not alone in this work. What we see is a useful collaboration between it and the European Space Agency’s Herschel Space Observatory. Using archival data from the latter, researchers have been able to measure both the fraction of starlight absorbed and later re-radiated as heat (via Herschel) as well as the fraction of starlight reflected from 2007 OR10 via Kepler. K2, sensitive to minute changes in brightness, was able to show that the object is one of the slowest rotating objects in the Solar System, taking about 45 hours to complete a revolution.

2007OR10-orbit

Image: The orbit of 2007 OR10 compared to the orbit of Eris, Pluto, and the outer planets. Credit: kheider [GPL (http://www.gnu.org/licenses/gpl.html)], via Wikimedia Commons.

Coupled with the Herschel data in the infrared, we’ve now established a more accurate measurement of 2007 OR10’s diameter than Herschel could provide on its own. The dwarf planet has a diameter of 1535 kilometers, some 250 kilometers greater than previously thought. That makes the surface darker as well, given that the same amount of light is being reflected by a larger object. The paper on this work discusses what this implies about the surface:

The red color of 2007 OR10 is likely to be due to the [retention] of methane, as it was proposed by Brown, Burgasser & Fraser (2011). In Fig. 1 in Brown, Burgasser & Fraser (2011), 2007 OR10 is nearly placed on the retention lines of CH4, CO and N2. The larger diameter derived in our paper places this dwarf planet further inside the volatile retaining domain, making the explanation of the observed spectrum more feasible.

The newly determined larger size of the dwarf planet, then, makes it more likely that the object can retain these volatile ices than if it had been smaller. The size, in fact, makes 2007 OR10 the third largest dwarf planet known after Pluto and Eris, just ahead of Makemake.

kepler20160511-16

Image: New K2 results peg 2007 OR10 as the largest unnamed body in our solar system and the third largest of the current roster of about half a dozen dwarf planets. The dwarf planet Haumea has an oblong shape that is wider on its long axis than 2007 OR10, but its overall volume is smaller. Credits: Konkoly Observatory/András Pál, Hungarian Astronomical Association/Iván Éder, NASA/JHUAPL/SwRI.

This isn’t the first time K2 has been involved with objects within the Solar System. Its previous targets have included the objects (278361) 2007 JJ43, 2002 GV31 and Neptune’s moon Nereid. Now, at 2007 OR10, we’re seeing variations in rotational brightness that are intriguing for their suggestion of variations in surface albedo. Here I can’t help recalling New Horizons and the way we went from faint indications of surface features during the long approach, to the close-up clarification of numerous kinds of terrain. How long will it be before we can repeat that feat with another outer system object like this one?

The paper is Pál et al., “Large size and slow rotation of the trans-Neptunian object (225088) 2007 OR10 discovered from Herschel and K2 observations,” Astronomical Journal Vol. 151, No. 5 (2016). Abstract / preprint.

tzf_img_post