Somehow I missed Mike Brown’s recent thoughts on 2003 EL61, the oddly elongated Kuiper Belt object that’s as big as Pluto along its longest dimension. Fortunately, the BBC recently covered the story. At the American Astronomical Society meeting in Seattle, Brown (Caltech) had discussed the instability of the object’s orbit, pointing out that it is headed for an eventual encounter with Neptune. A possible outcome: Two million years from now, 2003 EL61 may be a comet. “When it becomes a comet,” says Brown, “It will be the brightest we will ever see.”
Charter
In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).
Now Reading
Recent Posts
- Redefining the Galactic Habitable Zone
- Can Life Emerge around a White Dwarf?
- Autumn Among the Galaxy Clusters
- A Look at Dark Energy & Long-Term Survival
- Close-up of an Extragalactic Star
- Star Harvest: Civilizations in Search of Energy
- Clearing the Air
- A Millisecond Pulsar Engine for Interstellar Travel
On Comments
If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.
Follow by E-Mail
Advanced Propulsion Research
Exoplanet Projects (Earth)
- AFOE
- Amateur Exoplanet Archive
- Anglo-Australian Planet Search
- APACHE Project
- ASTEP: Antarctic Search for Transiting Extrasolar Planets
- ASTRA
- Astro Gregas
- Atacama Large Millimetre Array
- Automated Planet Finder
- Berlin Exoplanet Search Telescope
- California & Carnegie Planet Search
- Carl Sagan Institute (Cornell)
- CARMENES
- Carnegie Astrometric Planet Search
- CBA Belgium Observatory
- CHIRON
- CLEVER Planets
- CODEX
- Colossus
- Coralie
- DayNight
- DEMONEX (DEdicated MONitor of EXotransits)
- Dispersed Matter Planet Project
- East Asian Planet Search Network
- Elodie
- ESO Coude Echelle Spectrometer
- ESPRESSO (Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations)
- European Extremely Large Telescope
- Evryscope
- Exoplanet Tracker
- Externally Dispersed Interferometry
- Fabra-ROA
- GAPS (Global Architecture of Planetary Systems)
- Gemini Planet Imager
- GEMSS: Global Exoplanet M-dwarf Search-Survey
- Geneva Extrasolar Planet Search
- Habitable Zone Planet Finder
- HARPS North
- HARPS-N
- HATNet Exoplanet Survey
- High Accuracy Radial velocity Planetary Search
- Hobby-Eberly Telescope
- Italian Search for Extraterrestrial Life
- ITASEL
- Keck Interferometer
- Keck Planet Finder
- KELT North
- KELT South
- KMTNet (Korea Microlensing Telescope Network)
- KOBE: K-dwarfs Orbited By habitable Exoplanets
- Large Binocular Telescope
- Las Cumbres Global Telescope Network
- Low Frequency Array
- LYOT Project
- MACHO
- Magdalena Ridge Optical Interferometer
- Magellan Telescope
- MARVELS
- MARVELS (Multi-object APO Radial Velocity Exoplanet Large-area Survey)
- MASCARA
- Maunakea Spectroscopic Explorer
- McDonald Observatory
- MEarth
- METIS (Mid-Infrared E-ELT Imager and Spectrograph)
- MicroFUN Microlensing Follow-Up Network
- Microlensing Planet Search Project
- MINERVA (MINiature Exoplanet Radial Velocity Array)
- MOA
- MONET
- N2K
- Nancay Decametric Search
- NEAR
- NEID Spectrograph
- New Mexico Exoplanet Spectroscopic Survey Instrument
- NGTS (Next-Generation Transit Survey)
- NIRPS (Near Infrared Planet Searcher)
- Okayama Planet Search Program
- Optical Gravitational Lensing Experiment
- OWL
- PARAS (PRL Advanced Radial-velocity Allsky Search)
- Permanent All Sky Survey
- PHASES
- PIRATE (Physics Innovations Robotic Astronomical Telescope Explorer)
- PISCES (Planets in Stellar Clusters Extensive Search)
- PLANET
- PLANETS
- Precision Radial Velocity Spectrometer
- PRIMA-DDL
- Project 1640
- Pulsar Planet Detection
- QES (Qatar Exoplanet Survey)
- Radio Interferometric Planet Search
- RoboNet (Microlensing)
- SAINT-EX
- Search for Trojan Extrasolar Planets
- SEEDS (Subaru Strategic Exploration of Exoplanets and Disks)
- SHINE
- Solaris
- Sophie
- Spectrashift
- SPECULOOS
- SPHERE
- SPOTS: (Search for Planets Orbiting Two Stars
- Square Kilometer Array
- STARE
- STELLA
- SuperWASP
- Systemic
- Tennessee Automatic Photoelectric Telescope
- TEP
- Thirty Meter Telescope
- TransitSearch
- Transitsearch
- TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope)
- TrES: The Transatlantic Exoplanet Survey
- TRESCA Project
- United Kingdom Infrared Telescope
- University of St. Andrews Planet Search
- UNSWEPS Project
- UVES
- Very Large Telescope Interferometer
- VIDA
- WASP (Wide Angle Search for Planets)
- WHAT
- XO Project
Exoplanet Projects (Space)
- ACEsat
- Aragoscope
- ARIEL: (Atmospheric Remote-Sensing Infrared Exoplanet Large-survey)
- ASTERIA
- Astro-1
- ATLAST (Advanced Technology Large-Aperture Space Telescope)
- CHEOPS – CHaracterising ExOPlanet Satellite
- CoRoT
- CubeSat
- Darwin
- Dual Use Exoplanet Telescope
- ECHO (Exoplanet Characterization Observatory)
- Eddington
- EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation)
- Euclid
- EXCEDE
- ExoplanetSat CubeSat
- FINESSE
- Gaia
- GEST
- HabEx
- HEK (Hunt for Exomoons with Kepler)
- High Étendue Multiple Object Spectrographic Telescope (THE MOST)
- High-Definition Space Telescope
- HST Astrometry
- James Webb Space Telescope
- Kepler
- Kilometer Space Telescope
- Laser Interferometer Space Antenna
- LISE Hypertelescope
- LUVOIR
- MOST (Microvariability and Oscillations of STars)
- Nancy Grace Roman Space Telescope
- NEAT
- New Worlds Imager
- Origins Billion Star Survey
- Origins Space Telescope
- Pegase
- Planet Imaging Concept Testbed
- Plato
- PlaVi (PlanetVision)
- Project Blue
- SISTINE
- Space Interferometry Mission
- SPICES (Spectro-Polarimetric Imaging and Characterization of Exo-planetary Systems)
- Spitzer Space Telescope
- SUPER-SHARP
- SWEEPS
- Terrestrial Planet Finder
- TESS (Transiting Exoplanet Survey Satellite)
- TOLIMAN
- Twinkle
- UMBRAS
Further Astronomical and Astronautical Resources
- 100 Year Starship
- Acta Astronautica
- ADS Abstract Service
- Alternative Earths Astrobiology Center
- American Astronomical Society
- American Geophysical Union
- American Institute of Aeronautics and Astronautics
- astro-ph preprint server
- AstroArt of David A. Hardy
- AstroBetter
- Astrobiology Magazine
- Astrobites
- Astrometry.net
- Astronautics Now
- Astronomical Journal
- Astronomy & Astrophysics
- Astronomy Picture of the Day
- Astrophysical Journal
- Beyond NERVA
- British Interplanetary Society
- Bulletin of the American Astronomical Society
- Cosmic Ancestry
- Division for Planetary Sciences
- European Federation of Biophysics
- Event Horizon Telescope
- Exoplanet Transit Database
- Exploring the Universe with Andrew Fraknoi
- Extrasolar Planets and Astrobiology
- Extrasolar Planets Encyclopedia
- Galaxy Forum
- Galileo Project
- Google Scholar
- Icarus Interstellar
- Institute for Interstellar Studies
- Interstellar Journey
- Interstellar Research Centre
- Interstellar Studies Bibliography
- James Benford
- L’Institut de l’Information Scientifique et Technique
- Lunar and Planetary Institute
- Meteoritics and Planetary Science
- NASA Technical Reports Server
- Nature
- Orbital Index
- Orbital Index
- Overview Institute
- Physics
- Planetary and Life Science Community Meetings Calendar
- Planetary and Space Science
- Principium (Journal of I4IS)
- ResearchGATE
- RocketSTEM
- Science
- Scitizen
- SDSS SkyServer
- SETI News
- SFSU Exoplanet Group
- SIMBAD Astronomical Database
- Space Agenda
- Space Sailing
- Space Telescope Science Institute
- Space Transport and Engineering Methods
- spaceweather.com
- The neighborhood
- Trans-Neptunian Automated Occultation Survey
- Troy Project
Weblogs, Discussions, Commentaries
- Adam Crowl (Crowlspace)
- Airminded
- Alien Life
- Ancient Solar System
- Antimatter
- Apparent Brightness
- AstroBlog
- AstroEngine.com
- Astrogator's Logs (Athena Andreadis)
- Astronautical Evolution
- Astronomist
- Astronomy Blog
- Astronomy.com Blog
- astroPT
- Astroquizzical
- Asymptotia
- Atlas of the Universe
- B612 Foundation
- Bad Astronomy
- Beyond Earthly Skies
- Beyond Impossible
- Billion Year Plan
- Buran Space Shuttle
- Captain Interstellar (Paul Titze)
- Celestial Matters
- Cheap Astronomy
- Cocktail Party Physics
- collectSPACE
- Colony Worlds
- Comets & Asteroids: Small Bodies of the Solar System
- Cosmic Diary
- Cosmic Mirror
- Cosmic Tusk
- Cosmic Variance
- Cosmic Visions
- CosmoCoffee
- Cumbrian Sky
- Dad2059
- Deep Sky Blog
- Dialogos of Eide
- Dick’s Rocket Dungeon
- Dragon's Gaze
- Dream of the Open Channel
- Dreams of Space – Books and Ephemera
- Dreams of Space: Books and Ephemera
- Drew Ex Machina (Andrew LePage)
- DSFP's Spaceflight History Blog
- Dynamics of Cats
- Eternos Aprendizes
- Eureka
- Eureka (Daniel Marín)
- Ex Space
- ExoClimes.com
- Exoplanetology
- Exoplanets Channel
- Extrasolar Visions II
- Final Frontier
- Finding Pluto
- Flank Speed
- Fly Me to the Moon
- Fraknoi's Universe
- Future & Cosmos
- Future Incredible
- Future Planetary Exploration
- Futurismic
- Galactic Journey
- Gregory Benford
- Habitable Worlds
- Habitable Zone
- Hop's Blog
- Il Tredicesimo Cavaliere
- In the Dark (Peter Coles)
- Innovation Watch
- Innumerable Worlds
- Invitation to ETI
- Isaac Arthur (videos)
- James Essig
- James Randi Educational Foundation Forum
- Jatan's Space
- John Cleary Creations
- Jon Lomberg
- Kentucky Space
- Know the Cosmos
- Last Word on Nothing
- Laurel's Pluto Blog
- Leonard David's Inside Outer Space
- Letters to Nature
- Lifeboat Foundation
- Lone Mind
- Long Bets Foundation
- Long Now Foundation
- Lost in Transits
- Magellan AO
- Many Worlds (Marc Kaufman)
- Martian Chronicles
- Meridiani Journal
- Music of the Spheres
- Nano Age
- NASA Watch
- NASA-UC Eta-Earth Survey
- New Papyrus
- Next Big Future
- NGTS (Next-Generation Transit Survey)
- On the Path to Space
- One-Minute Astronomer
- OrbitalHub
- Orion's Arm
- Our Universe in 202 Notations
- Out of the Cradle
- Overcoming Bias (Robin Hanson)
- Patrick McCray
- peregrinus interstellar
- PHASES (Palomar High-precision Astrometric Search for Exoplanet Systems)
- Physics arXiv Blog
- PI Club
- Planet/Planet
- PLANETPLANET (Sean Raymond)
- Polymath (Robert Clark)
- Posthuman Blues
- Potentia Tenebras Repellendi
- Profiles of Our Future in Space
- Project Icarus Weblog
- Project Rho (Winchell Chung)
- Quasar9
- Real Science
- Remote Central
- Rick Costello Space Art
- Riding with Robots
- Robot Explorers
- Robot Guy
- Rymden i Dag
- Science Meets Fiction
- Science News
- SciTech Journal
- Scitizen
- Simostronomy
- Singularity Institute
- Slacker Astronomy
- SolStation
- Sorting Out Science
- Space Archaeology
- Space Elevator Blog
- Space FTW
- Space Law Probe
- Space Pragmatism
- Space Review
- Space Transport News
- Space Travel Blog UT Tartu Observatory
- Spaceflight History
- Spacewriter’s Ramblings
- Stan Erickson's Alien Civilization Blog
- Star Bright?
- Star Stryder
- Starts with a Bang
- Strange Paths
- Sufficiently Advanced
- Supernova Condensate
- This Is Rocket Science
- This Week’s Finds in Mathematical Physics
- Tiny Mantras
- Titan Exploration
- Tom Barclay/Planet Hunter
- Tomorrow Is Here
- Trevor Paglen
- Ultratech Memes
- Universe Today
- Unmanned Spaceflight
- Velcro City Tourist Board
- Visions 2200
- Visual Astronomy
- Visualizing Science
- Wanderingspace
- Watered Down Physics
- Where's The Flux (Tabby's Star)
- Will Gater
- Woodward Effect
- Worlds of David Darling
- Wow! Signal Podcast
- Written Worlds
Hi Paul
Of course in 2 million years I hope EL61 is either real estate or has been chewed up by industry. Would be a waste for it to boil-away as a comet.
There’s a paper from the 2004 STAIF conference on terraforming small bodies, but there’s nothing much available about it online but the abstract…
Title:
Shell Worlds: An Approach to Making Large Moons and Small Planets Habitable
Authors:
Roy, Kenneth I.; Kennedy, Robert G.; Fields, David E.
Affiliation:
AA(The Ultimax Group Inc, Oak Ridge, TN 37830 . KIRoy@ultimax.com), AB(The Ultimax Group Inc, Oak Ridge, TN 37830 ), AC(Tamke-Allan Observatory, Harriman, TN 37748 )
Publication:
SPACE TECHNOLOGY AND APPLICATIONS INTERNAT.FORUM-STAIF 2004: Conf.on Thermophys.in Microgravity; Commercial/Civil Next Gen.Space Transp.; 21st Symp.Space Nuclear Power & Propulsion; Human Space Explor.; Space Colonization; New Frontiers & Future Concepts. AIP Conference Proceedings, Volume 699, pp. 1075-1084 (2004). (AIPC Homepage)
Publication Date:
02/2004
Origin:
STI
Keywords:
space research, Moon, planets, human factors, atmospheric chemistry, ecology, energy resources, transportation, environmental factors, design, failure analysis,
Abstract Copyright:
(c) 2004: American Institute of Physics
DOI:
10.1063/1.1649675
Bibliographic Code:
2004AIPC..699.1075R
Abstract
The main problem with terraforming is finding planets with workable initial parameters: large enough, temperate enough, wet enough, axial spin not too fast or too slow, a magnetic field, etc. We consider a novel method of creating habitable worlds for humanity by enclosing airless and sterile planets, moons, and even large asteroids within engineered shells supported by breathable atmospheres. Beneath the shell an earthlike environment could be formed similar in almost all respects to that of Earth except for gravity, regardless of the distance to the sun or other star. These would be natural worlds, not merely large habitats, stable across historic timescales at least, each comprising a full self-sustaining ecology, which might evolve in interesting and distinct directions over time. This approach requires no fundamental breakthroughs in science or physics but does require progress in energy production, space transportation, and environmental and materials sciences.
…interesting feature is the rigid shell for a sky. That’s how the ancients viewed “the heaven” – a gigantic transparent shell, upon which the clouds and heavenly bodies moved. Out past Pluto, with an artificial Sun, such a scenario might well come true.
Engineered shells — fascinating concept. I’ll try to scare this one up at one of the local university libraries.
The shell supported by atmospheric pressure would be quite stable too, kind of self-stabilised because any shift in the shell would be counteracted by the pressure asymmetry it would create. I wonder how they planned to get around meteorite damage? Would be pretty substantial over time.
Another possibility is the hollow pressurised shell without any interior planet. Such an object would provide a huge living
oops… typo on that last one. I hit ‘submit’ too soon.
…a huge living volume. Just how big? Just a bit smaller than the Jeans radius would insure against unintentional gravitational collapse. I think the strength of the shell would give out before it got that big.
“large, dense, rugby-ball-shaped … with a fast rotation rate.”
Almost sounds like a spaceship!
To give that last post some figures a shell filled with air at its surface average of density, temperature and pressure (1.225 kg/m^3; 288.15 K; 101.325 kPa) and the Jean’s mass is 69,500 km across. For straight oxygen at 0.2 bar the diameter is 141,900 km – almost as big as Jupiter.
Within all that air the visibility would rapidly decline within a few hundred kilometres – our atmosphere is the equivalent of 8 km of air at surface average density etc. Light is absorbed/scattered by that thickness so we receive just 70% of the light from the Sun. The amount of absorption/scattering increases exponentially, so 80 km of air reduces light to 2.8% of its space value, and 800 km reduces it to less than a quadrillionth.
Such an air-shell would need internal ‘suns’ of its own and from space would look rather like a gas-giant planet, just a lot lighter in mass. The Jupiter scale air-shell’s gas mass would be less than 5 times the Moon’s mass, 6% of Earth.
Strange indeed. Karl Schroeder has written an SF novel set in such a world, “Sun of Suns”, with a ‘steam-punk’ retro-tech feel. Personally I’d rather hard regolith beneath my feet and at least 10% earth gravity.
To show the immense progress that weather forecasting has made, I can state with high confidence that when 2003 EL61 puts on its show, it will be cloudy in Ohio.
Just shells made from comets?
C’mon, people – think WAY outside the box, or the Shell,
as it may be:
http://www.aeiveos.com:8080/%7Ebradbury/MatrioshkaBrains/index.html
Hi Larry
You’re a fan of that concept aren’t you? Personally I think it’s bogus, but who can say? Running the equivalent of 10^26 humans at once (10^42 mips) is quite a bit of brain-power, but what’s the point if they’re all in a shared VR?
Adam
I’ve always liked the “supercomet” concept. Makes you wonder if, in some extrasolar system, a Pluto-like object has been kicked into the inner regions of a planetary system, and what would happen to it. Once we get systematic direct detection of extrasolar planets (as opposed to the radial velocity stuff we have now), we might find that bright comets or possibly even supercomets could be more easily detected than planets. There’s an abstract to a paper I’ve seen about this but right now I can’t find it.