Where did our planet get the stuff from which life is made? The sources seem surprisingly diverse, and we’re learning more about how organic materials may have complemented each other in forming life four billion years ago. Extraterrestrial compounds — biomolecules formed in deep space and falling to Earth — probably contributed. And so did lightning and ultraviolet radiation, along with vulcanism and deep water chemical reactions that could enhance molecular synthesis.

Now getting new emphasis is the role of mineral surfaces in helping to activate molecules essential to life, like amino acids (from which proteins are made) and nucleic acids (think DNA). In a recent study, Robert Hazen (Carnegie Institution Geophysical Laboratory) described where we stand at identifying the pairing of molecule and mineral. When molecules like amino acids adhere to mineral surfaces, a variety of organic reactions can occur that affect what life can emerge.

“Some 20 different amino acids form life-essential proteins,” Hazen explained. “In a quirk of nature, amino acids come in two mirror-image forms, dubbed left and right-handed, or chiral molecules. Life, it turns out, uses the left-handed varieties almost exclusively. Non-biological processes, however, do not usually distinguish between left and right variants. For a transition to occur between the chemical and biological eras, some process had to separate and concentrate the left- and right-handed amino acids. This step, called chiral selection, is crucial to forming the molecules of life.”

The hunt, then, is to find what mineral surfaces are what Hazen calls the best ‘docking stations’ for various biomolecules. The possibilities are vast considering the number of mineral types and available molecules, but Hazen’s team is using DNA microarray technology to help. The result is to overhaul the protocols for doing this work and make the investigation both more accurate and much faster. The technique allows the team to study these complex interactions and discover which mineral surfaces and which organic molecules manage to work together.

Much work lies ahead, but Hazen’s team can now identify a million types of biomolecules through their interactions with mineral surfaces, and analyze the results quickly. The goal is an understanding of how specific organics from the vast number available assembled into early life, and how they were able to become concentrated enough to begin a basic metabolism. The work, which draws on biology, chemistry and geology, gives us a glimpse not only of the primitive Earth but a better understanding of the conditions that may lead to life on other worlds.

The paper is Hazen, “Mineral surfaces and the prebiotic selection and organization of biomolecules,” American Mineralogist Vol. 91, No. 11-12 (November, 2006), pp. 1715-1729.