Two new techniques for examining interesting SETI signals come into view this morning, one out of Breakthrough Listen work at UC-Berkeley, the other from researchers working with the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the so-called ‘Heaven’s Eye’ instrument located in southwest China. In both cases, the focus is on ways to screen SETI observations from disruptive radio frequency interference (RFI), which can appear at first glance to flag a signal from another star.

The Chinese work relies upon FAST’s array of receiving instruments, each acting as a separate ‘beam’ to cover slightly different portions of the sky. FAST’s currently operational L-band receiver array consists of 19 beams, to which researchers led by Bo-lun Huang (Beijing Normal University) apply a technique called MultiBeam Point-source Scanning (MBPS). Here the instrument scans the target star sequentially with different beams of the instrument, setting up the possibility of cross-verification and allowing researchers to identify local interference quickly and accurately.

The paper on this work points to the SETI ON-OFF strategy as a more conventional way to analyze a target star. In this case, the star is observed for a short time, followed by a different target six or more beamwidths away from the primary. These become the ‘ON’ and ‘OFF’ of the method, the assumption being that an authentic signal from another civilization would appear only in the ON set of observations. MBPS, on the other hand, can be used by any radio telescope with a multibeam receiver and requires the telescope to slew during the observation periods to provide ongoing comparisons between each beam.

Let me quote the paper on this:

…we are effectively adding new parameters and the observation data can thus be interpreted from different perspectives. The additional parameters introduced by the MBPS strategy include the duration of signals in a single beam, intensity variation of signals, and the difference in central frequencies of different beams which are the results of the observation method of the MBPS. With the three newly introduced parameters, we are then able to put in the most rigorous restrictions on the RFI/ETI identifications by confining the characteristics of an ETI/RFI signal in a new multi-parameter space.

Having run a re-observation campaign on TRAPPIST-1 using this strategy (this followed a set of observations taken in 2021), the team was able to retrieve all 16,645 received signals (!) as RFI. The authors’ confidence level in the technique is high:

We speculate that it would be exceedingly rare for the MBPS strategy to return any suspicious signals, even over the course of several years, because the types of false positives found by other strategies are easily identifiable with the MBPS strategy. However, when a genuine narrowband ETI signal does arrive on Earth, the MBPS strategy is capable of identifying it even amidst a substantial influx of RFI.

Image: An illustration shows how FAST receives radio waves emitted by distant pulsars, the rapidly rotating cores of dead stars. At left, a photo shows the huge telescope in Guizhou province. Can the new methods in the Bo-lun Huang paper help us weed radio interference out of signals from another civilization? Credit: China Daily.

At UC-Berkeley, Bryan Brzycki and team have been analyzing interstellar ‘scintillation,’ the refraction or bending of electromagnetic waves that pass through cold plasma in interstellar space. Rising and falling in amplitude, the waves interfere when they reach Earth by different paths. The phenomenon has been well studied through analysis of pulsars and other distant radio sources, and an obvious analog occurs in the twinkling of starlight created by Earth’s atmosphere. In the case of interstellar scintillation, Brzycki has come up with algorithms that can analyze narrowband signals for this effect, quickly selecting for those that show the phenomenon and thus are not local.

On first glance, this appears extraordinarily useful, as co-author (and Brzycki thesis adviser) Imke de Pater (UC-Berkeley) points out:

“This implies that we could use a suitably tuned pipeline to unambiguously identify artificial emission from distant sources vis-a-vis terrestrial interference. Further, even if we didn’t use this technique to find a signal, this technique could, in certain cases, confirm a signal originating from a distant source, rather than locally. This work represents the first new method of signal confirmation beyond the spatial reobservation filter in the history of radio SETI.”

Image: The Green Bank Telescope, nestled in a radio-quiet valley in West Virginia, is a major listening post for Breakthrough Listen. Credit: Steve Croft, Breakthrough Listen.

A useful tool indeed, though bear in mind that it proves useful only for signals originating more than 10,000 light years from Earth, for to produce the needed scintillation, the signal must do a lot of traveling. If we do make a SETI detection with the aid of scintillation, in other words, it will not be of a civilization we’ll be likely to converse with (unless, of course, we find a way someday to actually visit it).

The Brzycki paper dovetails nicely with the FAST work, as witness its discussion of the ON-OFF strategy discussed above. The italics below are mine:

…RFI can also appear in only ON observations. For example, RFI signals could exhibit intensity modulations that follow the observational cadence of 5 minutes per pointing, a false positive that would pass the directional filter. While we observe false positives like this in practice, having directional requirements still serves as an interpretable basis for determining candidates, which would induce follow-up observations for potential re-detection.

This begs the question: can we differentiate narrowband signals as RFI based on morphology alone? Since ETI signals must travel to us through interstellar space, are there effects that would be observable and sufficiently unique compared to RFI modulations?

Thus the important result: The effect of scintillation does indeed provide a way to single out RFI simply because no local interference will produce the effect. Indeed, as the authors note, ETI might well consider the presence of scintillation in an artificial, narrowband signal as an announcement: ‘we are here.’ Where this work points is to further analysis of radio emission – the authors single out polarization, which they say is only beginning to be studied in the SETI context. Who can doubt their conclusion?

Whether it is because certain effects are stochastic or because human radio emission exploits every facet of radio light possible for communication, extracting non trivial information from a radio signal’s detailed morphology has been and will remain difficult. We may need to push the limits of detectability along hitherto unexplored axes to discover the first technosignature.

The paper from FAST is Bo-lun Huang et al., “A solution to persistent RFI in narrowband radio SETI: The MultiBeam Point-source Scanning strategy,” currently available as a preprint. The paper on scintillation is Brzycki et al., “On Detecting Interstellar Scintillation in Narrowband Radio SETI,” Astrophysical Journal 17 July 2023 (full text).