Interstellar studies toy with our expectations. Those of us who think about sending probes to other stars share the frustration of the long time-scales involved, not just in transit times but also in arriving at the technologies to make such missions happen. But the other half of interstellar studies, the observation and characterization of targets, is happening at a remarkable rate, with new instruments coming online and an entire class of extremely large telescopes in the pipeline. Exoplanet studies thrive.

In between, upcoming events are encouraging. Having identified two interstellar objects – 1I/ʻOumuamua and comet 2I/Borisov – in our own Solar System, we will shortly be able to expand the number of such confirmed interlopers enormously. That puts us in position to build intercept missions to study and sample material from another stellar system in relatively short order. The Legacy Survey of Space and Time (LSST), being planned for the now under construction Vera C. Rubin Observatory in Chile, should be able to detect interstellar materials passing through our system in abundance.

Image: An artist’s impression of a small, rocky interstellar object hurtling from the upper right toward the inner Solar System. The orbits of the four inner planets (Mercury, Venus, Earth, Mars) are fully visible, drawn as teal concentric circles around the bright ball of the Sun at the center. We see the orbits from a slightly elevated angle, so that the circular paths appear oval. The black background is sprinkled with points of starlight. The interstellar object looks like an elongated potato above the Sun, streaming toward the Sun from the upper right, with a short tail of gas and dust trailing behind. Credit: Rubin Observatory/NOIRLab/NSF/AURA/J. daSilva.

The LSST has crept into almost every discussion we’ve had in these pages about our two known interstellar visitors, along with the lament that had we found these objects sooner, we would have had been able to collect much more data from them. A 10-year survey of the southern sky (from the El Peñon peak of Cerro Pachón in northern Chile), the survey will use a large-aperture wide-field instrument called the Simonyi Survey Telescope (SST) to study half the sky every three nights in six optical bands. It will deploy the largest digital camera ever constructed, with a 9.6 square degree of view.

Using three refractive lenses, the LSST Camera will take a pair of 15-second exposures of each field, operating throughout the night. Astronomers plan over 5.2 million exposures in ten years, creating views that will be sensitive to redshifts up to z=3. Recall the terminology: z=3 means that the observed wavelength of light from a distant object is three times longer than the rest wavelength (when the light was emitted.

Because the z parameter represents the stretching of wavelength owing to the expansion of the universe, higher values of z represent more distant (and hence older) objects, receding from us at a significant percentage of the speed of light. I’ve seen a redshift of z=0.0043 for the galaxy M87, which is roughly 55 million light years from Earth. A redshift of z=3 implies an object whose light has been traveling 11 billion years to reach us. That would make the actual distance to the object today over 18 billion light years because of the continuing expansion of the universe as the light travels. Las Cumbres Observatory offers an excellent backgrounder on all this.

Forgive the digression – this is how I learn stuff. But the point is that what the LSST will create is what its planners call a ‘movie,’ one summing that decade of observation and exposures and sensitive to extraordinarily distant objects. To get a sense of this, consider that the LSST project will take 15 terabytes of data every night, yielding an uncompressed data set of 200 petabytes. And with this kind of sensitivity, interstellar objects moving into our own Solar System should appear with some regularity.

Michele Bannister (University of Canterbury, NZ), a member of the Rubin Observatory/LSST Solar System Science Collaboration, comments:

“Planetary systems are a place of change and growth, of sculpting and reshaping. And planets are like active correspondents in that they can move trillions of little tiny planetesimals out into galactic space. A rock from another solar system is a direct probe of how planetesimal formation took place at another star, so to actually have them come to us is pretty neat. We calculate that there are a whole lot of these little worlds in our Solar System right now. We just can’t find them yet because we aren’t seeing faint enough.”

Image: This image captures not only Vera C. Rubin Observatory, a Program of NSF’s NOIRLab, but one of the celestial specimens Rubin Observatory will observe when it comes online: the Milky Way. The bright halo of gas and stars on the left side of the image highlights the very center of the Milky Way galaxy. The dark path that cuts through this center is known as the Great Rift, because it gives the appearance that the Milky Way has been split in half, right through its center and along its radial arms. In fact, the Great Rift is caused by a shroud of dust, which blocks and scatters visible light. This dust makes the Great Rift a difficult space to observe. Fortunately, Rubin is being built to conduct the Legacy Survey of Space and Time (LSST). This survey will observe the entire visible southern sky every few nights over the course of a decade, capturing about 1000 images of the sky every night and giving us a new view of our evolving Universe. Rubin Observatory is a joint initiative of the National Science Foundation and the Department of Energy (DOE). Once completed, Rubin will be operated jointly by NSF’s NOIRLab and DOE’s SLAC National Accelerator Laboratory to carry out the Legacy Survey of Space and Time. Credit: RubinObs/NOIRLab/NSF/AURA/B. Quint.

The LSST has uses far beyond interstellar interlopers, of course, with implications for the study of dark energy and dark matter as well as the formation of the Milky Way and the trajectories of potentially hazardous asteroids. But its emergence, beginning with first operations in late 2024, puts us on the cusp of studying planet formation using materials from other stellar systems. That brings intercept missions into the discussion, a topic we’ve considered in these pages before through the work of my friend Andreas Hein (University of Luxembourg). On a broader level, consider that expansion into the Solar System already has interstellar aspects, as I’ll discuss soon with a look at what we are learning about interstellar dust, and how missions beyond the heliosphere can inform our views of the local bubble in which we move.