If you can put together a consortium that takes in a variety of public and private organizations, then seed it with university expertise, you can start involving yourself in space research. Take a look at what Kentucky Space is all about. I’m reminded of its ongoing efforts by the fact that its blog is currently hosting the Carnival of Space, reporting in the introduction on its upcoming sub-orbital mission, scheduled for launch today from the Mojave desert. Kentucky Space’s projects have included KySat, a student-led initiative involving small satellites from design to launch and operation.

This is an active and interesting program well worth your attention, and its Web presence is ably enlivened by Wayne Hall, who presents the current Carnival materials. Of these, I point you to Colony Worlds and its enjoyable musings on dogs in space. Headed out for Mars for a couple of years, or perhaps planning on settling in a distant colony, maybe an O’Neill habitat somewhere out around L-5? If so, you’ll get a kick out of Darnell Clayton’s reasons why your dog may be your best traveling companion. All of which reminds me of one of the wilder dreams I’ve ever had, about one of my Border Collies being sent Laika-style aboard a spacecraft bound for Neptune…

Also intriguing from the mix is Ian O’Neill’s short piece on black holes, and the results of a computer simulation that rammed two black holes into each other at close to the speed of light. The question: What happens to the event horizon after so cataclysmic an event? Can a black hole exist without one? The results from this work by Emanuele Berti and team at the Jet Propulsion Laboratory were intriguing:

Unlike previous simulations examining lower-energy collisions, far more energetic gravitational waves were produced. So much so that 14% of the total masses of the colliding black holes were converted into gravitational wave energy. So far so good. If this extreme (and unlikely) scenario were to occur, perhaps we’d know what to look out for in the noisy LIGO data, and we might gain an estimate of how much mass black holes shed in these encounters. However, there’s another outcome to Berti’s research: black holes keep their event horizons no matter what is thrown at them.

An event as powerful as this is gravitationally interesting, but it’s also of note in relation to Roger Penrose’s musings on so-called ‘naked’ singularities, which suggest there is no way they can exist in nature. Exactly how such ‘cosmic censorship’ might work is an open question — Ian notes that you can work out the math to show that a singularity could exist without an event horizon — but in any case, we have no idea what a naked singularity would look like if it did exist, making this theorizing unlikely to move into the realm of observational data any time soon.