≡ Menu

Star Trek Plus Fifty

The founder of the Tau Zero Foundation takes a look at the promise of Star Trek, and asks where we stand with regard to the many technologies depicted in the series. My own first memory of Star Trek is seeing a first year episode and realizing only a few days later that it had been one of the few times a TV science fiction show never mentioned the Earth. That was an expansive and refreshing perspective-changer from the normal fare of 1966, though back then I would never have dreamed how much traction the show would gain over time. But with the series now a cultural icon, how about Starfleet’s tech? Will any of it actually be achieved?

by Marc Millis


This week marks the 50th anniversary of Star Trek‘s debut. In just 3 seasons, the series started a cultural ripple effect that’s still going. The starship Enterprise became an icon for a better future – predicting profound technical abilities, matched with a rewardingly responsible society, and countless wonders left to explore. Many engineers and scientists trace their career inspirations to that show. The effect spread worldwide and has been described as a yearning for “a deep and eternal need for something to believe in: something vast and powerful, yet rational and contemporary. Something that makes sense.” [1]

Now, half a century later, how are we doing toward realizing the fantastic futures of Trek? Are we making progress on faster-than-light flight (FTL), control over inertial and gravitational forces, extreme energy prowess, and the societal discipline to harness that much power responsibly?

I directed NASA’s “Breakthrough Propulsion Physics” project – NASA’s first documented inquiry into the prospects of Star-Trek-like breakthroughs – controlling gravity for propulsion and achieving faster-than-light flight. That project was funded from 1995-2002, and continued unfunded through around 2008. With the help of networks beyond NASA via the Tau Zero foundation, the results of the NASA work plus many others were compiled into Frontiers of Propulsion Science, (2009). There has been some more progress from multiple places since then, but by and large that compilation is still a decent starting point into the details.



Let’s start with the most obvious and glamorous – faster than light flight. The first scientific paper about FTL wormholes appeared in 1988 [2], followed 7 years later with an extensive scholarly book on the topic [3]. Alcubierre’s “warp drive” paper appeared in 1994 [4] and a recent progress report on FTL approaches is available here [5].

In short, FTL is now a theoretical possibility, anchored in Einstein’s general relativity, even though daunting challenges remain. Instead of violating the lightspeed limit through spacetime, these theories are about manipulating spacetime itself – which is an entirely different situation. A significant next-step challenge is to find a way to create bare negative energy – and a lot of it. While negative energy can be created now (such as within Casimir cavities), the catch is that it is still contained inside of a greater amount of normal positive mass-energy. The first experimental demonstration of bare negative energy would be a pivotal moment.

A few other lessons followed: Wormholes are likely to be a more energy-efficient way of achieving FTL than warp drives. The previously touted time-travel paradoxes that seemed to prevent FTL have been found to be non-issues (You cannot use FTL flight to go back in time and kill your grandfather before your father is born). And the last lesson is that better theoretical tools are needed. Many of the FTL investigations have been limited to 1-dimensional analysis rather than full-up 3D spacetime. The theory for FTL flight is there, but still in its infancy.

For fun, I calculated how fast we would need to fly to get as much action as Captain Kirk. In their 5-year mission (of 3 seasons) they seemed to encounter a new civilization almost every episode – 79 episodes. Combining that with a provisional estimate of 1900 light-years between civilizations [6], yields a required speed of 30,000 times lightspeed. That’s about 300 million times faster than today’s spacecraft.

Recall that, on interstellar scales, lightspeed is slow. At lightspeed, our closest neighboring star, Proxima Centauri, is over 4.2 years away. Our next nearest 10 stars are within about 10 light years away. To reach Proxima Centauri within a person’s career span (say 42 years), we have to get our spacecraft up to 10% lightspeed. That’s over 1000 times faster than we’ve done before.



To reduce production budgets, Trek included “transporters” to move people from one point to another with just a scene change – plus noises and lighting effects. The premise is that the people would be dematerialized into some sort of energy beam that could then rematerialize somewhere else. Despite the similar nomenclature with “quantum teleportation” (a real thing) Trek transporters are an entirely different animal. The closest thing in the scientific literature to creating a transporter effect is a wormhole – discussed previously.

Control over Gravitational and Inertial forces

Many of the key features of the starship Enterprise require the ability to manipulate gravitational and inertial forces. The most obvious feature is internal gravitation for its crew – which conveniently matches studio conditions. Think about it – in the middle of space, far from any gravitating body, there is no “down” to fall toward. Things just float.

The ability to induce a gravitational field inside of a spacecraft would be a huge breakthrough with all sorts of spin-offs. If we could induce a gravitational field inside the spacecraft, then why not outside as well – as a form of propulsion? This leads next to concepts like “tractor beams” and “deflectors,” to push objects out of the way of the screaming-through Enterprise. And… if you can push and pull distant objects, it’s likely that you can also sense them in a way that defies contemporary familiarity, such as identifying distant objects by their mass density (convenient for gold prospecting).

While the need for FTL is glaringly obvious, the implications of these mass-based breakthroughs are harder to grasp. Consider this analogy. Long ago, electric charges and magnets were known to exist but not understood. Things got interesting when we learned that electricity can create magnetic fields, and magnetic fields can generate electricity. Thereafter motors, generators, lighting, and… even the computer screen that you are reading this on… were invented.

Similarly, we know that gravitation and electromagnetism exist. Newton got as far as deciphering the behavior of gravity and inertia and then Einstein extended those to include electromagnetism, relativistic speeds, and intense gravitation. But we do not yet understand how that works. If we ever figure out how to use our prowess in electromagnetism to affect changes in gravitation or inertia, then all those Trek-ish visions might be realized, including zero-gravity recreational hotel rooms. The first experimental evidence of such abilities would be a turning point for humanity.

Physics in general has been seeking such knowledge and making progress since its very beginning. Over recent decades other phenomena have been discovered that challenge our existing theoretical models. There is plenty of room for new empirical discoveries and theoretical ‘ah-ha’ moments. When examined in the context of breakthrough propulsion, different lines of inquiry are added. For example, the search for “space drive” effects has revealed the importance of understanding the origins of inertial frames [7].

Extreme Energy Prowess

To achieve interstellar flight, even in the conventional sense, requires incredible amounts of energy. To bump our spacecraft speeds up to 10% lightspeed (1000 times faster than now), we need at least 1-million times more energy. While these sorts of numbers are conceivable within future decades, there are secondary issues which often get overlooked in both the fiction and even in some engineering studies. One example is how to get rid of the waste heat. When converting one form of energy to another, there are inefficiency losses. For something as small as a car engine or air-conditioner, the excess heat is easy to vent to the atmosphere. But when the energy levels get extreme and if they are used in space where it is harder to radiate that energy, then even a 1% inefficiency can lead to enormous challenges. These are not show-stoppers, but details that are a part of the big picture.

When considering the FTL theories, the required energy levels become astronomical. An old example (from Matt Visser) is that to create a 1-meter diameter wormhole, one would need to get as much rest-mass-energy as the whole planet Jupiter, convert it in the form of bare negative energy, and then make it small enough to create that 1-meter opening. Subsequent analyses have brought those estimates much lower, but we are still talking mind-boggling feats of energy prowess. Any new theory or experiment that shows how to warp spacetime with achievable energies would be a pivotal development.

A significant secondary issue is how to use that energy safely. The energy levels of interstellar flight are so great that, if misused, could wipe out all life on Earth. This leads to another key feature of the Star Trek visions – a mature society that wields its power responsibly.

Societal Maturity

Although Star Trek was thought-provoking from the technological point of view, it was also very comforting from a sociological point of view. The crew of the Enterprise behaved in an honorable and respectful manner to each other and to other cultures, despite differences in background, race, sex, or character. They did not abuse their power. Even though they worked toward common goals, each individual had their special niche. Several episodes featured the crew of the Enterprise coming to the rescue of some civilization that gone astray because of their lack of sensible treatment toward each other. Most often those wayward societies would learn their Trek lesson and turn the corner to a better life. If only it were that easy to get people to override their errant beliefs with facts, wisdom, and a good role model.

Of all the challenges, this one is probably the most difficult and the most needed. The survival of humanity. depends on it. To safely wield our growing powers, our society will have to mature to where we work for the common good rather than against each other. A glimmer of hope is that we have refrained from unleashing a nuclear holocaust for over a half century, despite precarious international bickering from time to time. I’ve also read articles that, proportionally, we are killing each other less. Compared to human history, however, a half-century is a tiny moment. As the decades tick by and our energy prowess grows, will all of us wield our powers responsibly? Will we learn to live in a manner where our disagreements do not become life-threatening?

The difficulty of creating these societal improvements is that the tools we have are the same thing that we are trying to fix. To make society healthier, we need a healthy society. When we are part of the problem that we are trying to solve, there is a limit to our perspectives. It’s a bit like asking a vacuum cleaner to suck itself up.

One way to step back and see ourselves more impartially is to contemplate far future societies in the form of “world ships.” Imagine a colony of 50,000 people constrained in a finite ship headed across space for centuries. In addition to sustaining physical life support, their society will have to sustain a peaceful and meaningful culture. Such challenges are explored in the disciplines of Astrosociology and Space Anthropology. Perhaps as more rigorous data about human behavior accumulates, along with methods for complex data analysis, we will eventually figure out how to design a society that accommodates the full realities of human behavior in a manner where individuals can live meaningful lives within a lasting peaceful culture.

Closing Thought – Reflections on Proxima b

It’s been said that having a moon so close to Earth helped create the space program. The science fiction for that step began with Jules Verne in 1865, followed by the mathematical foundations from Konstantin Tsiolkovsky in 1903, and culminating in the Apollo moon landing in 1969. Roughly a half century from fiction to science, and another half century from science into substance.

Now we have an potentially habitable planet as close as it could possibly be. Our nearest neighboring star, Proxima Centauri, has a planet a little bit bigger than Earth which might have liquid water. It’s 4.2 light years away, has a mass 30% more than Earth, and is in the habitable zone of its red dwarf star. Its star is dimmer, cooler, and tiny compared to our Sun (14% the size, 12% the mass), which means that its habitable zone is only 5% the distance between our Sun and Earth. Accordingly, a year on the new-found planet is only 12 Earth days. The science is here.

For those of us who have been contemplating interstellar flight longer than we’ve known better (Tau Zero is a decade old this year), it couldn’t get any better than this – unless we later learn that the planet does indeed have an atmosphere, proof of liquid water, and the right spectral clues for life. This distance makes it within reach of conceivable probes. Just earlier this year, billionaire Yuri Milner committed $100 million for research into one approach to interstellar flight, laser pushed light sails, dubbed Breakthrough Starshot. That particular idea is decades old, with the first detailed analysis done by Robert Forward in the 1980’s. Starshot hopes to nudge the idea from concept to technological proofs of concept.

Centauri b beckons. Will this be the catalyst to nudge interstellar flight toward reality? Consider that the notion of space sails dates back to at least 1929 (and can actually be traced in some form all the way back to the works of Kepler). Those foundations were converted into science by the late 1980’s, and Starshot is trying to mature the science into technology now. If the pattern of the Moon shot repeats, we’ll have probes on their way to Proxima by the 2040s. And consider this. The science fiction for faster than light flight dates back to John W. Campbell in 1931, and the first science articles were in 1988 and 1994. If the pattern repeats there too, we might have warp drives reaching the planet “Proxima b” before Starshot even gets there.

Ad astra incrementis


[1] Greenwald, J. (1988). Future Perfect: How Star Trek Conquered Planet Earth. (Viking).

[2] Morris, M. S., & Thorne, K. S. (1988). “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity.” Am. J. Phys, 56(5), 395-412.

[3] Visser, M. (1996). Lorentzian wormholes. From Einstein to Hawking. (AIP Press), 1.

[4] Alcubierre, M. (1994). “The warp drive: hyper-fast travel within general relativity.” Classical and Quantum Gravity, 11(5), L73.

[5] Davis, E. W. (2013). Faster-Than-Light Space Warps, Status and Next Steps. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 3860).

[6] Maccone, C. (2011). “SETI and SEH (statistical equation for habitables),” Acta Astronautica, 68(1), 63-75.

[7] Millis, M. G. (2012). “Space Drive Physics: Introduction and Next Steps.” Journal of the British Interplanetary Society, 65, 264-277.


Comments on this entry are closed.

  • Geoffrey Hillend September 15, 2016, 17:13

    The problem I have with Mills idea of free electrons have negative mass is that the electron gets its rest mass from the Higgs field as do the other matter particles such as leptons, baryons etc.

    • Robert September 17, 2016, 13:41

      Well, there is no Higgs field in Mills’ universe.

  • Geoffrey Hillend September 17, 2016, 17:57

    Quote by Robert. “There is a surprisingly little data on gravity and free electrons The data that exists suggests free electrons do not fall under gravity.” There are lots of data on gravity and electrons and free electrons are pulled by gravity which acts on all matter as proven by experiments in general relativity and falling objects in Earth gravitational field. Charged particles in motion emit electromagnetic radiation and so does a free electron in a gravitational field as it accelerates in free fall. This might change its geodesic a very small fraction but that is it.

    Randell L. Mills is NOT a physicist. He has a medical degree from Harvard and is considered a crackpot by physicists. His hydrino idea of free power was debunked like idea of cold fusion which means there is no evidence it works. He does not use scientific principles which is probably why there is no Higgs field in his universe which is not this universe but an imaginary one. Electrons don’t have any mass without the Higgs field. If electrons did not have any mass there would not be any chemistry, matter, physical universe etc.

  • ljk November 14, 2016, 12:12

    Was Physics Really Violated By EM Drive In “Leaked” NASA Paper?

    Article Updated: 12 November 2016

    by Matt Williams

    Ever since NASA announced that they had created a prototype of the controversial Radio Frequency Resonant Cavity Thruster (aka. the EM Drive), any and all reported results have been the subject of controversy. And with most of the announcements taking the form of “leaks” and rumors, all reported developments have been naturally treated with skepticism.

    And yet, the reports keep coming. The latest alleged results come from the Eagleworks Laboratories at the Johnson Space Center, where a “leaked” report revealed that the controversial drive is capable of generating thrust in a vacuum. Much like the critical peer-review process, whether or not the engine can pass muster in space has been a lingering issue for some time.

    Given the advantages of the EM Drive, it is understandable that people want to see it work. Theoretically, these include the ability to generate enough thrust to fly to the Moon in just four hours, to Mars in 70 days, and to Pluto in 18 months, and the ability to do it all without the need for propellant. Unfortunately, the drive system is based on principles that violate the Conservation of Momentum law.

    Full article here:


    To quote:

    The report, titled “Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum“, was apparently leaked in early November. It’s lead author is predictably Harold White, the Advanced Propulsion Team Lead for the NASA Engineering Directorate and the Principal Investigator for NASA’s Eagleworks lab.

    The report is online here:


  • ljk January 4, 2017, 11:39

    More Trek, less Wars

    A new Star Wars movie has attracted large audiences since its debut last month. Dwayne Day, though, suggests that it’s Star Trek that offer the stronger connections to spaceflight, and a much-needed optimistic philosophy about the future.

    Tuesday, January 3, 2017


    To quote:

    In a recent essay, Peter Frase noted the difference between science fiction and futurism and argued that the latter—an attempt to directly predict the future—obscured the future’s inherent uncertainty and contingency and was ultimately stultifying. Frase suggested that science fiction was richer, more honest, and more humble. Star Trek, Frase wrote, “wants to root its characters in a richly and logically structured social world.”

    But Gene Roddenberry certainly had a philosophy, a humanitarian message, and Star Trek was his pulpit. Star Trek was never trying to predict the future. It was trying to depict a future worth living in. As Roddenberry said in 1976:

    Star Trek was an attempt to say that humanity will reach maturity and wisdom on the day that it begins not just to tolerate, but take a special delight in differences in ideas and differences in life forms. […] If we cannot learn to actually enjoy those small differences, to take a positive delight in those small differences between our own kind, here on this planet, then we do not deserve to go out into space and meet the diversity that is almost certainly out there.

    In that talk Roddenberry concluded:

    The much-maligned common man and common woman has an enormous hunger for brotherhood. They are ready for the twenty-third century now, and they are light years ahead of their petty governments and their visionless leaders.

  • ljk January 4, 2017, 11:42

    For those who may still be wondering if J. J. Abrams was really that bad for the Star Trek franchise, especially its core ideals, wonder no more…

    Quoting from this article:


    “I never liked ‘Star Trek’ when I was a kid,” said Abrams. “Growing up, I thought, honestly, I couldn’t get into it. My friends loved it. I would try, I would watch episodes but it always felt too philosophical to me. Some of the writers loved ‘Star Trek,’ I was not really a fan, my producing partner never saw it … so when we were all happy it felt like that was the way to go.”

    “I stopped listening to you when you said you didn’t like ‘Star Trek,'” joked Stewart, after which Abrams humbly and humorously explained his approach to the series as a non-fan.

    “You … and your kind … were much smarter than I was,” laughed Abrams. “I couldn’t get it. So we tried to make it work for people like me … and people like you. The goal [with ‘Star Trek Into Darkness’] was to make a movie for moviegoers, not just for ‘Star Trek’ fans. So if you’ve never seen ‘Star Trek’ before, you can still see it.”

    The dumbing down of society continues.