I marvel that so many of the big questions that have preoccupied me during my life are starting to yield answers. Getting New Horizons to Pluto was certainly part of that process, as a mysterious world began to reveal its secrets. But we’re also moving on the Alpha Centauri question. We have a habitable zone planet around Proxima, and we’re closing on the orbital space around Centauri A and B, a G-class star like our Sun and a cooler K-class orange dwarf in a tight binary orbit, the nearest stars to our own.

At the heart of the research is an instrument called a thermal infrared coronagraph, built in collaboration between the European Southern Observatory and Breakthrough Watch, the privately funded attempt to find and characterize rocky planets around not just Alpha Centauri but other stars within a 20 light year radius of Earth. The coronagraph blocks out most of the stellar light while being optimized to capture the infrared frequencies emitted by an orbiting planet. Note that point: We are talking not about reflected starlight, but infrared emission as a potentially Earth-like planet absorbs energy from its star and emits it at these wavelengths.

The instrument is called NEAR (Near Earths in the AlphaCen Region), developed by teams working at the University of Uppsala (Sweden), the University of Liège (Belgium), the California Institute of Technology and Kampf Telescope Optics in Munich, Germany. Installed at ESO’s Very Large Telescope on one of the four 8-meter instruments there, NEAR upgrades the existing VISIR (VLT Imager and Spectrometer for the InfraRed) to improve contrast and sensitivity, aiming at one part in a million contrast at less than one arcsecond separation.

Remember how daunting a challenge Centauri A and B present. At their most distant, the two stars are about 35 AU apart as they orbit their common barycenter. Orbital eccentricity drops that figure to a mere 11 AU as they close during their 79.9 year orbit. Imagine our night sky if we, like a hypothetical planet around Centauri B, had a G-class star at roughly Saturn’s orbit.

Image: Apparent and true orbits of Alpha Centauri. The A component is held stationary and the relative orbital motion of the B component is shown. The apparent orbit (thin ellipse) is the shape of the orbit as seen by an observer on Earth. The true orbit is the shape of the orbit viewed perpendicular to the plane of the orbital motion. According to the radial velocity vs. time [12] the radial separation of A and B along the line of sight had reached a maximum in 2007 with B being behind A. The orbit is divided here into 80 points, each step refers to a timestep of approx. 0.99888 years or 364.84 days. Credit: Wikimedia Commons.

Then, too, imagine what our view of the universe would be if we had evolved in a place where the night sky held planets around our own star as well as our tight companion, one of which was a habitable world. We have no idea whether such worlds exist around either of the primary Centauri stars, but NEAR has us on pace to learn something soon. My guess is that any civilization in such a setting would have a tremendous spur to develop spaceflight to explore a potential second home that would be within reach of the kind of technologies we have today.

The coronagraph that the NEAR effort brings to VISIR is what should make it possible to detect the signatures of terrestrial-class worlds, just as adaptive optics can screen out atmospheric effects that would distort the vanishingly faint signal (Markus Kasper at the ESO likens this task to detecting a firefly sitting on a lighthouse lamp from several hundred kilometers). NEAR’s ability to reduce noise and switch rapidly between target stars on a 100 millisecond cycle means that in all such operations, precious telescope time is maximized.

Image: ESO’s Very Large Telescope (VLT) has recently received an upgraded addition to its suite of advanced instruments. On 21 May 2019 the newly modified instrument VISIR (VLT Imager and Spectrometer for mid-Infrared) made its first observations since being modified to aid in the search for potentially habitable planets in the Alpha Centauri system, the closest star system to Earth. This image shows NEAR mounted on UT4, with the telescope inclined at low altitude. Credit: ESO/ NEAR Collaboration/.

So where are we now? A ten-day observing run on Alpha Centauri has been conducted since May 23, with observations concluding today. According to the ESO, planets twice the size of Earth or larger should be detectable with the upgraded VISIR. Consider too that working at near- to thermal-infrared wavelengths will allow astronomers to make a call on the temperature of any planet detected with these methods, an obvious clue to potential habitability.

“NEAR is the first and (currently) only project that could directly image a habitable exoplanet. It marks an important milestone. Fingers crossed – we are hoping a large habitable planet is orbiting Alpha Cen A or B,” says Olivier Guyon, lead scientist for Breakthrough Watch.

Data from the NEAR work will be made publicly available from the ESO archive, with a ‘pre-processed and condensed package’ of all the data offered shortly after the campaign ends. This ESO news release notes that a high-contrast imaging data reduction tool called PynPoint has been adapted to process NEAR data. Those without their own data reduction tools can learn more about the software’s installation and setup for NEAR at this PynPoint page.