We usually think about habitability in terms of liquid water on the surface, which is the common definition of the term ‘habitable zone.’ But even in our own system, we have great interest in places where this is not the case (e.g. Europa). In today’s essay, Nick Nielsen begins with the development of complex life in terms not just of a habitable zone, but what some scientists are calling an ‘abiogenesis zone.’ The implications trigger SETI speculation, particularly in systems whose host star is nearing the end of its life on the main sequence. Are there analogies between habitable zones and the conditions that can lead not just to life but civilization? These boundary conditions offers a new direction for SETI theorists to explore.

by J. N. Nielsen

Recently a paper of some interest was posted to arXiv, “There’s No Place Like Home (in Our Own Solar System): Searching for ET Near White Dwarfs,” by John Gertz. (Gertz has several other interesting papers on arXiv that are working looking at.) Here is the abstract of the paper in its entirety:

The preponderance of white dwarfs in the Milky Way were formed from the remnants of stars of the same or somewhat higher mass as the Sun, i.e., from G-stars. We know that life can exist around G-stars. Any technologically advanced civilization residing within the habitable zone of a G-star will face grave peril when its star transitions from the main sequence and successively enters sub-giant, red giant, planetary nebula, and white dwarf stages. In fact, if the civilization takes no action it will face certain extinction. The two alternatives to passive extinction are (a) migrate away from the parent star in order to colonize another star system, or (b) find a viable solution within one’s own solar system. It is argued in this paper that migration of an entire biological population or even a small part of a population is virtually impossible, but in any event, far more difficult than remaining in one’s home solar system where the problem of continued survival can best be solved. This leads to the conclusion that sub-giants, red giants, planetary nebula, and white dwarfs are the best possible candidate targets for SETI observations. Search strategies are suggested.

There are a number of interesting ideas in the above. The first thing that strikes me about this is that it exemplifies what I call the SETI paradigm: interstellar travel is either impossible or so difficult that SETI is the only possibility for contact with other civilizations. [1]

The SETI paradigm is worth noting in this context because Gertz is considering these matters on a multi-billion year time scale, i.e., a cosmological scale of time, and not the scale of time at which we usually measure civilization. Taking our own case of civilization as normative, if terrestrial civilization endures through the red giant and white dwarf stages of our star, that means our civilization will endure for billions of years, and in those billions of years (in the Gertz scenario) we will not develop any of the technology that would allow us to make the journey to other stars, including those other stars that will come within less than a light year of our own star with some frequency over cosmological scales of time. [2] We will, however, according to this scenario, develop technologies that would allow us to migrate to other parts of our own planetary system. I find that this contrast in technological achievement makes unrealistic demands upon credulity, but this is merely tangential to what I want to talk about in relation to this paper.

What most interests me about the scenario contemplated in this paper is its applicability to forms of emergent complexity other than human civilization. What I mean by “other forms of emergent complexity” is what I now call emergent complexity pluralism, which I present in my upcoming paper “Peer Complexity during the Stelliferous Era.” The paper isn’t out yet, but you can see a video of my presentation in Milan in July 2019: Peer Complexity during the Stelliferous Era, Life in the Universe: Big History, SETI and the Future of Humankind, IBHA & INAF-IASF MI Symposium. (Write to me if you’d like a copy of the paper.) In brief, we aren’t the only kind of complexity that may arise in the universe.

The simplest case of an alternative emergent complexity, and the case most familiar to us, is to think of Gertz’s scenario in terms of life without the further emergent complexities that have come to supervene upon human activity, chiefly civilization. In the case of a planet like Earth, possessed of a biosphere that has endured for billions of years and which has produced complex forms of life, one could expect to see exactly what Gertz attributes to technological civilizations, though biology alone could be sufficient to account for these developments. However — and this is a big however — the conditions must be “just right” for this to happen. In other words, something like the Goldilocks conditions of the “Goldilocks Zone” (the circumstellar habitable zone, or CHZ) must obtain, though in a more generalized form, so that each form of emergent complexity may have its own distinctive boundary conditions.

A further distinction should be introduced at this point. The boundary conditions of the emergence of complexity (whether of life, or civilization, or something else yet) may be distinct from the boundary conditions for the further development of complexity, and especially for developments that involve further complexity emerging from a given complexity, in the way that consciousness and intelligence emerged from life on Earth, and civilization emerged in turn from consciousness and intelligence. This distinction has been captured in origins of life research by the distinction between the habitability zone (the CHZ, in its conventional use) and the abiogenesis zone. The former is the region around a star where biology is possible, whereas the latter is the region in which biology can arise.

In a 2018 paper, The origin of RNA precursors on exoplanets, by Paul B. Rimmer, Jianfeng Xu, Samantha J. Thompson, Ed Gillen, John D. Sutherland, and Didier Queloz, this distinction between conditions for the genesis of life and conditions for the development and furtherance of life is made, and the two sets of boundary conditions are shown to overlap, but not to precisely coincide:

“The abiogenesis zone we define need not overlap the liquid water habitable zone. The liquid water habitable zone identifies those planets that are a sufficient distance from their host star for liquid water to exist stably over a large fraction of their surfaces. In the scenario we consider, the building blocks of life could have been accumulated very rapidly compared to geological time scales, in a local transient environment, for which liquid water could be present outside the liquid water habitable zone. The local and transient occurrences of these building blocks would almost certainly be undetectable. The liquid water habitable zone helpfully identifies where life could be sufficiently abundant to be detectable.” [3]

The idea implicit in defining an abiogenesis zone distinct from a habitable zone can be extrapolated to other forms of complexity: boundary conditions of emergence may be distinct from boundary conditions for development and longevity; the conditions for the emergence of civilization may be distinct from the conditions for the longevity of civilization. But let us return to the scenario of life maintaining itself within its planetary system without the assistance of intelligence or technology.

Image: This is Figure 4 from the Rimmer et al. paper. Caption: A period-effective temperature diagram of confirmed exoplanets within the liquid water habitable zone (and Earth), taken from a catalog (1, 42, 43), along with the TRAPPIST-1 planets (3) and LHS 1140b (4). The “abiogenesis zone” indicates where the stellar UV flux is large enough to result in a 50% yield of the photochemical product. The red region shows the propagated experimental error. The liquid water habitable zone [from (44, 45)] is also shown. Credit: Rimmer et al.

Whereas the CHZ is usually defined in terms of a region of space around a star clement for life as we know it, the boundary conditions for alternative emergent complexities will be optimal relative to the emergent complexity in question. That is to say, the wider we construe “habitability” (i.e., the more diverse kinds of emergent complexity that might inhabit a planet or planetary system) the more CHZs there will be, as each form of emergent complexity will have boundary conditions distinctive to itself.

In a planetary system with a large number of rocky worlds spaced relatively close together, these worlds could serve as “stepping stones” for enhanced lithopanspermia. [4] At each stage in the life of the parent star of such a planetary system with life, the life would be distributed among the available planets, and it would flourish into a planetary-scale biosphere on the world with the most clement conditions. When the star began to swell into a red giant, the inner planets would become inhospitable to life, but life could then migrate outward to the cooler planets. And then, when the star cooled down again, life could once again planet-hop nearer to the now-cooler star.

We do not yet know if the boundary conditions for emergent complexity longevity obtain within our own solar system. Is Mars close enough that life, going extinct on Earth, could make the transition to this cooler world, and possibly also further out to the moons of the gas giants? In The Jovian Oceans [5] I suggested that, as the sun grows into a red giant, the outer regions of the solar system will become warmer and the subsurface oceans of some of the moons of Jupiter and Saturn may thaw out and become watermoons (in contradistinction to waterworlds). These regions of our solar system may be clement to life when Earth is no longer habitable, but if life cannot make the journey to these worlds, they may as well not exist at all. We still have a billion years for sufficiently hardy microorganisms to evolve, and for collisions with large bodies to blast microorganisms off the surface of Earth and into trajectories that would eventually result in their impacting on Mars. The chances for this strike me as marginal, but over a billion years we cannot exclude marginal scenarios.

As I have noted in Life: from Sea to Land to Space, the expansion of life from Earth into space (like the expansion of life from the oceans onto land) will open up a vastly greater number of niches to life than could exist on any one planet, so that the opportunities for adaptive radiation are increased by orders of magnitude. But this expansive scenario for life in space is contingent upon the proper boundary conditions obtaining; life must expand into an optimal environment in order for it to experience optimal expansion and adaptive radiation. [6] And as the boundary conditions for the emergence of emergent complexity may be distinct from the boundary conditions for the longevity of emergent complexity, emergent complexity (like a biosphere) may flourish and die on one planet without the opportunity to exploit the potential of other niches. [7]

There are also distinctive boundary conditions for the longevity of civilization. If a civilization is to employ technological means to extend its longevity, whether through journeying to other stars, or, according to Gertz’s scenario, shifting itself within its home planetary system (“sheltering in place”), then the conditions must first be right for a life to arise, and then for civilization to supervene upon life, and finally for civilization to pass beyond its planetary origins by technological means. These boundary conditions might include, for example, an adequate supply of fossil fuels for the civilization to make its original transition to industrialization, and, later, sufficient titanium resources to build spacecraft, and sufficient fissionables to supply nuclear power or to operate nuclear rockets.

It takes a “just right” planetary system for a technological civilization to successfully make a spacefaring breakout from its homeworld — just as being a space-capable civilization is a necessary condition for spacefaring breakout, coming to an initial threshold of technological maturity in the context of favorable boundary conditions is also a necessary condition for being a spacefaring civilization. It also takes a “just right” stellar neighborhood for a spacefaring civilization to make an interstellar breakout from its home system. The boundary conditions for interstellar civilization are subject to change over cosmological scales of time, because stars change their relationships to each other within the galaxy, but there will still be regions in the galaxy with more favorable conditions and regions in the galaxy with less favorable conditions.

As I have noted in other contexts, technology is a means to an end, and usually not an end in itself, so that there is a certain fungibility in the use of technologies: if the resources are unavailable for a particular technology, they may be available for some other technology that can serve in a similar capacity. A marginal technology in favorable boundary conditions, or a superior technology in unfavorable boundary conditions, might do the trick either way. However, there are limits to technological fungibility. The boundary conditions for the longevity of technological civilizations set these limits.


[1] I have written about the SETI paradigm in my Centauri Dreams post Stagnant Supercivilizations and Interstellar Travel, inter alia.

[2] I discussed interstellar travel by waiting for other planetary systems to pass near our own in the aforementioned Stagnant Supercivilizations and Interstellar Travel.

[3] “The origin of RNA precursors on exoplanets,” by Paul B. Rimmer, Jianfeng Xu, Samantha J. Thompson, Ed Gillen, John D. Sutherland, and Didier Queloz, Science Advances, 01 Aug 2018: Vol. 4, no. 8, DOI: 10.1126/sciadv.aar3302

[4] Cf. two papers on this, “Enhanced interplanetary panspermia in the TRAPPIST-1 system” by Manasvi Lingam and Abraham Loeb, and “Fast litho-panspermia in the habitable zone of the TRAPPIST-1 system”, by Sebastiaan Krijt, Timothy J. Bowling, Richard J. Lyons, and Fred J. Ciesla, and my post Emergent Complexity in Multi-Planetary Ecosystems.

[5] This post also noted two papers, then recent, on habitability zones around post-main sequence stars, “Habitable Zones Of Post-Main Sequence Stars” by Ramses M. Ramirez, et al., and “Habitability of Super-Earth Planets around Other Suns: Models including Red Giant Branch Evolution” by W. von Bloh, M. Cuntz, K.-P. Schroeder, C. Bounama, and S. Franck, both of which are relevant to Gertz’s argument.

[6] René Heller has introduced the concept of superhabitable worlds, i.e., worlds more clement for life than Earth, thus optimal for life (cf., e.g., “Superhabitable Worlds”, by René Heller and John Armstrong), which suggests a similar implicit distinction between merely habitable planetary systems and superhabitable planetary systems, merely habitable galaxies and superhabitable galaxies, and so on.

[7] Freeman Dyson argued for the value of life that can adapt to conditions distinct from the planetary endemism that characterizes life as we know it: “…planets compare unfavourably with other places as habitats. Planets have many disadvantages. For any form of life adapted to living in an atmosphere, they are very difficult to escape from. For any form of life adapted to living in vacuum they are death-traps, like open wells full of water for a human child. And they have a more fundamental defect: their mass is almost entirely inaccessible to creatures living on their surface.” (Dyson, F. J. 2003. “Looking for life in unlikely places: reasons why planets may not be the best places to look for life.” International Journal of Astrobiology, 2(2), 103-110) Dyson’s reasons for favoring life independent of planets does not alter the fact that a lot of interesting chemistry occurs on planets that does not occur elsewhere because other environments do have not large scale geomorphological processes; however, Dyson’s observations do point to the selective value of life that can adapt to habitats without planets.