Can you imagine the science we could do if we had the capability of sending a probe to Jupiter with travel time of less than a month? How about Neptune in 18 weeks? Alex Tolley has been running the numbers on a concept called Wind Rider, which derives from the plasma magnet sail he has analyzed in these pages before (see, for example, The Plasma Magnet Drive: A Simple, Cheap Drive for the Solar System and Beyond). The numbers are dramatic, but only testing in space will tell us whether they are achievable, and whether the highly variable solar wind can be stably harnessed to drive the craft. A long-time contributor to Centauri Dreams, Alex is co-author (with Brian McConnell) of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016), focusing on a new technology for Solar System expansion.

by Alex Tolley

In 2017 I outlined a proposed magnetic sail propulsion system called the Plasma Magnet that was presented by Jeff Greason at an interstellar conference [6]. It caught my attention because of its simplicity and potential high performance compared to other propulsion approaches. For example, the Breakthrough Starshot beamed sail required hugely powerful and expensive phased-array lasers to propel a sail into interstellar space. By contrast, the Plasma Magnet [PM] required relatively little energy and yet was capable of propelling a much larger mass at a velocity exceeding any current propulsion system, including advanced solar sails.

The Plasma Magnet was proposed by Slough [5] and involved an arrangement of coils to co-opt the solar wind ions to induce a very large magnetosphere that is propelled by the solar wind. Unlike earlier proposals for magnetic sails that required a large electric coil kilometers in diameter to create the magnetic field, the induction of the solar wind ions to create the field meant that the structure was both low mass and that the size of the resulting magnetic field increased as the surrounding particle density declined. This allowed for a constant acceleration as the PM was propelled away from the sun, very different from solar sails and even magsails with fixed collecting areas.

The PM concept has been developed further with a much sexier name: the Wind Rider, and missions to use this updated magsail vehicle are being defined.

Wind Rider was presented at the 2021 Division of Planetary Sciences (DPS) meeting by the team led by Brent Freeze, showing their concept of the design for a Jupiter mission they called JOVE. The December meeting of the American Geophysical Union was the venue for a different Wind Rider concept mission to the SGL, called Pathfinder.

The main upgrade from the earlier PM to the Wind Rider is the substitution of superconducting coils. This allows the craft to maintain the magnetic field without requiring constant power to maintain the electric current, reducing the required power source. Because the superconducting coils would quickly heat up in the inner system and lose their superconductivity, a gold foil reflective sun shield is deployed to shield the coils from the sun’s radiation. This is shown in the image above with the shield facing the sun to keep the coils in shadow. The shield is also expected to do double duty as a radio antenna, reducing the net parasitic mass on the vehicle.

The performance of the Wind Rider is very impressive. Calculations show that it will accelerate very rapidly and reach the velocity of the solar wind, about 400 km/s. This has implications for the flight trajectory of the vehicle and the mission time.

The first mission proposal is a flyby of Jupiter – Jupiter Observing Velocity Experiment (JOVE) – much like the New Horizons mission did at Pluto.

Figure 1. The Wind Rider on a flyby of Jupiter. The solar panels are hidden behind the sun shield facing the sun. The 16U CubeSat chassis is at the intersection of the 2 coils and sun shield.

The JOVE mission proposal is for an instrumented flyby of Jupiter [2]. The chassis is a 16U CubeSat. The scientific instrument payload is primarily to measure data on the magnetic field and ion density around Jupiter. The sail is powered by 4 solar panels that also double as struts to support the sun shield and generate about 1300 W at 1 AU and fall to about 50W at Jupiter.

Figure 2. Trajectory of the Wind Rider from Earth to Jupiter

The flight trajectory is effectively a beeline directly to Jupiter, starting the flight almost at opposition. No gravity assists from Earth or Venus are required, nor a long arcing trajectory to intercept Jupiter. Figure 2 shows the trajectory, which is almost a straight-line course with the average velocity close to that of the solar wind.

Although the mission is planned as a flyby, a future mission could allow for orbital insertion if the craft approaches Jupiter’s rotating magnetosphere to maximize the impinging field velocity. Although not mentioned by the authors, it should be noted that Slough has also proposed using a PM as an aerobraking shield that decelerates the craft as it creates a plasma in the upper atmosphere of planets.

How does the performance of the Wind Rider compare to other comparable missions?

The JUNO space probe to Jupiter had a maximum velocity of about 73 km/s as Jupiter’s gravity accelerated the craft towards the planet. The required gravity assists and long flight path, about 63 AU or over 9 billion km, mean that its average velocity was about 60 km/s. This is not the fairest comparison as the JUNO probe had to attain orbital insertion at Jupiter.

A fairer comparison is the fastest probe we have flown – the New Horizons mission to Pluto — which reached 45 km/s as it left Earth but slowed to 14 km/s as it flew by Pluto. New Horizons took 1 year to reach Jupiter to get a gravity assist for its 9 year mission to Pluto, and therefore a maximum average velocity of 19 km/s between Earth and Jupiter.

Wind Rider can reach Jupiter in less than a month. Figure 2 shows the almost straight-line trajectory to Jupiter. Launched just before opposition, Wind Rider reaches Jupiter in just over 3 weeks. Because opposition happens annually, a new mission could be launched every year.

As the Wind Rider quickly reaches its terminal velocity at the same velocity as the solar wind, it can reach the outer planets with comparably short times with the same trajectory and annual launch windows.

The Wind Rider can fly by Saturn in just 6 weeks, and Neptune in 18 weeks. Compare that to the Voyager 2 probe launched in 1977 that took 4 years and 12 years to fly by the same planets respectively. Pluto could be reached by Wind Rider in just 6 months.

Because of its high terminal velocity that does not reduce during its mission, the Wind Rider is also ideally suited for precursor interstellar missions.

The second proposed mission is called Pathfinder [1], proposed to ultimately reach the solar gravity focal line around 550 AU from the sun. Flight time is less than 7 years, making this a viable project for a science and engineering team and not a multi-generation one based on existing rocket propulsion technology. As the flight trajectory is a straight line, this makes the craft well suited to follow the focal line while imaging a target star or exoplanet using the sun’s diameter as a large aperture telescope to increase the resolving power.

As the Wind Rider reaches the solar wind velocity, it may even be able to ride the gusts of higher solar wind velocities, perhaps reaching closer to 550 km/s.

While solar sails have been considered the more likely means to reach high velocities, especially when making sun-diver maneuvers, even advanced sails with proposed areal densities well below anything available today would reach solar system escape velocities in the range of 80-120 km/s [3]. If the Wind Rider can indeed reach the velocity of the solar wind, it would prove a far faster vehicle than any solar sail being planned, and would not need a boost from large laser arrays, nor risky sun-diver maneuvers.

I would inject some caution at this point regarding the performance. The performance is based entirely on theoretical work and a small scale laboratory experiment. What is needed is a prototype launched into cis-lunar space to test the performace on actual hardware and confirm the capability of the technology to operate as theorized.

It should also be noted that despite its theoretical high performance, there is a potential issue with propelling a probe with a magnetic sail. Compared to a solar sail or a vehicle with reaction thrusters, the Wind Rider as described so far has no crosswind capability. It just runs in front of the solar wind like a dandelion seed in the wind. This means that it would have to be aimed very accurately at its target, and subject to the vagaries of the strength of the solar wind that is far less stable than the sun’s photon emissions. Like the dandelion, if the Wind Rider was very inexpensive, many could be launched in the expectation that at least one would successfully reach its target.

However, there is a possibility that some crosswind capability is possible. This is based on modelling by Nishida [4]. This paper was recommended by Dr. Freeze [7].

The study modeled the effect of the angle of attack of the magnetic field of a coil against the solar wind. The coil in this case would represent the induced circular movement of the solar wind induced by the primary Wind Rider/PM coils.

Theoretically, the angle of attack has an impact on the total force pushing past the magnetic field.

Figure 3 shows the pressure and on the field as the coil is rotated from 0 through 45 and 90 degrees to the solar wind.

The force experienced is maximal at 90 degrees. This is shown visually in figure 3 and graphically in figure 4.

Figure 4. Force on the coil effected by angle of attack. A near 90 degrees angle of attack increases the force about 50%.

The angle of attack also induces a change in the thrust vector experienced by the coil, which would act as a crosswind maneuvering capability, allowing for trajectory adjustments as well as a longer launch window for the Wind Rider.

Figure 5. The angle of attack affects the thrust vector. But note the countervailing torque on the coil.

If the coil can maintain an angle of attack with respect to teh solar wind, then the Wind Rider can steer across the solar wind to some extent.

Figure 6. (left) Angle of attack, and steering angle. (right) angle of attack and the torque on the coil.

Figure 6 shows that the craft could steer up to 12 degrees away from the solar wind direction. However, maintaining that angle of attack requires a constant force to oppose the torque restoring the angle of attack to zero or 90 degrees. The coil therefore acts like a weather vane, always trying to align itself with the solar wind. To maintain the angle of attack would be difficult. Reaction wheels like those on the Kepler telescope could only act in a transient manner. Another possibility suggested is to move the center of gravity of the craft in some way. Adding booms with coils might be another solution, albeit by adding mass and complexity, undesirable for this first generation probe. Jeff Greason has an upcoming paper to be published in 2022 on theoretical navigation with possible ranges of steering capability.

In summary, the Wind Rider is an upgraded version of the Plasma Magnet propulsion concept, now applied to a reference design for 2 missions, a fast flyby of Jupiter, and an interstellar precursor mission that could reach the solar gravity lens focus. The performance of the design is primarily based on modelling and as yet there is no experimental evidence to support a finite lift/drag ratio for the craft.

Having said that, the propulsion principle and hardware necessary are not expensive, and there seems to be much interest by the AIAA. Maybe this propulsion method can finally be built, flown and evaluated. If it works as advertised, it would open up the solar system to exploration by fast, cheap robotic probes and eventually crewed ships.


1. Freeze, B et al Wind Rider Pathfinder Mission to Trappist-1 Solar Gravitational Lens Focal Region in 8 Years (poster at AGU – Dec 13th, 2021).

2. Freeze, B et al Jupiter Observing Velocity Experiment (JOVE), Introduction to Wind Rider Solar Electric Propulsion Demonstrator and Science Objective.

3. Vulpetti, Giovanni, et al. (2008) Solar Sails: A Novel Approach to Interplanetary Travel. New York: Springer, 2008.

4. Nishida, Hiroyuki, et al. “Verification of Momentum Transfer Process on Magnetic Sail Using MHD Model.” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005.

5. Slough, J. “Plasma Magnet NASA Institute for Advanced Concepts Phase I Final Report.” 2004. See Figure 2.

6. Tolley, A “The Plasma Magnet Drive: A Simple, Cheap Drive for the Solar System and Beyond” (2017).

7. Generous email communications with Dr. Brent Freeze in preparation of this article.