How helpful can electric propulsion become as we plan missions into the local interstellar medium? We can think about this in terms of the Voyager probes, which remain our only operational craft beyond the heliosphere. Voyager 1 moved beyond the heliopause in 2012, which means 35 years between launch and heliosphere exit. But as Nadim Maraqten (Universität Stuttgart) noted in a presentation at the recent International Astronautical Congress, reaching truly unperturbed interstellar space involves getting to 200 AU. We’d like to move faster than Voyager, but how?

Working with Angelo Genovese (Initiative for Interstellar Studies), Maraqten offers up a useful analysis of electric propulsion, calling it one of the most promising existing propulsion technologies, along with various sail concepts. In fact, the two modes have been coupled in some recent studies, about which more as we proceed. The authors believe that the specific impulse of an EP spacecraft must exceed 5000 seconds to make interstellar precursor missions viable in a timeframe of 25-30 years, acknowledging that this ramps up the power needed to reach the desired delta-v.

Electric propulsion is a method of ionizing a propellant and subsequently accelerating it via electric or magnetic fields or a combination of the two. The promise of these technologies is great, for we can achieve higher exhaust velocities by far with electric methods than through any form of conventional chemical propulsion. We’ve seen that promise fulfilled in missions like DAWN, which in 2015 became the first spacecraft to orbit two destinations beyond Earth, having reached Ceres after previously exploring Vesta. We can use electric methods to reduce propellant mass or achieve, over time, higher velocities. [Addendum: Thanks to several readers who noticed that I had reversed the order of Vesta and Ceres in the DAWN mission above. I’ve fixed the mistake.]

Image: 6 kW Hall thruster in operation at the NASA Jet Propulsion Laboratory

Unlike chemical propulsion, electric concepts have a relatively recent history, having appeared in Robert Goddard’s famous notebooks as early as 1906. In fact, Goddard’s 1917 patent shows us the first example of an electrostatic ion accelerator useful for propulsion, even if he worked at a time when our understanding of ions was incomplete, so that he considered the problem as one of moving electrons instead. Konstantin Tsiolkovsky had also conceived the idea and wrote about it in 1911, this from the man who produced the Tsiolkovsky rocket equation in 1903 (although Robert Goddard would independently derive it in 1912, and so would Hermann Oberth about a decade later).

As Maraqten and Genovese point out, Hermann Oberth wound up devoting an entire chapter (and indeed, the final one) of his 1929 book Wege zur Raumschiffahrt (Ways to Spaceflight) to what he describes as an ‘electric spaceship.’ That caught the attention of Wernher von Braun, and via him Ernst Stuhlinger, who conceived of using these methods rather than chemical propulsion to make von Braun’s idea of an expedition to Mars a reality. It had been von Braun’s idea to use chemical propulsion with a nitric acid/hydrazine propellant, as depicted in a famous series on space exploration that ran in Collier’s from 1952-1954.

But Stuhlinger thought he could bring the mass of the spacecraft down by two-thirds while expelling ions and electrons to achieve far higher exhaust velocity. It was he who introduced the idea of nuclear-electric propulsion, by replacing a power system based on solar energy with a nuclear reactor, thus moving us from SEP (Solar Electric Propulsion) to NEP (Nuclear Electric Propulsion). Let me quote Maraqten and Genovese on this:

Stuhlinger immersed himself in electric propulsion theory, and in 1954 he presented a paper at the 5th International Astronautical Congress in Vienna entitled, “Possibilities of Electrical Space Ship Propulsion”, where he conceived the first Mars expedition using solar-electric propulsion [4]. The spacecraft design he proposed, which he nicknamed the “Sun Ship”, had a cluster of 2000 ion thrusters using caesium or rubidium as propellant. He calculated that the total mass of the “Sun Ship” would be just 280 tons instead of the 820 tons necessary for a chemical-propulsion spaceship for the same Mars mission. In 1955 he published: “Electrical Propulsion System for Space Ships with Nuclear Source” in the Journal of Astronautics, where he replaced the solar-electric power system with a nuclear reactor (Nuclear Electric Propulsion – NEP). In 1964 Stuhlinger published the first systematic analysis of electric propulsion systems: “Ion Propulsion for Space Flight” [3], while the physics of electric propulsion thrusters was first described comprehensively in a book by Robert Jahn in 1968 [5].

In 1957, the Walt Disney television program ‘Mars and Beyond’ (shown in the series ‘Tomorrowland’) featured the fleet of ten nuclear-electric powered spacecraft that Stuhlinger envisioned for the journey. As you can see in the image below, this is an unusual design, a vehicle that became known as an ‘umbrella ship.’ I’ve quoted him before on this, but let me run the passage again. It’s from Stuhlinger’s 1955 paper “Electrical Propulsion System for Space Ships with Nuclear Power Source”:

A propulsion system for space ships is described which produces thrust by expelling ions and electrons instead of combustion gases. Equations are derived from the optimum mass ratio, power, and driving voltage of a ship with given payload, travel time, and initial acceleration. A nuclear reactor provides the primary power for a turbo-electric generator; the electric power then accelerates the ions. Cesium is the best propellant available because of its high atomic mass and its low ionization energy. A space ship with 150 tons payload and an initial acceleration of 0.67 x 10-4 G, traveling to Mars and back in a total travel time of about 2 years, would have a takeoff mass of 730 tons.

Image: Ernst Stuhlinger’s Umbrella Ship, built around ion propulsion. Notice the size of the radiator, which disperses heat from the reactor at the end of the boom. The source for this concept was a Stuhlinger paper called “Electrical Propulsion System for Space Ships with Nuclear Power Source,” which ran in the Journal of the Astronautical Sciences 2, no. Pt. 1 in 1955, pp. 149-152. Credit: Winchell Chung.

While I’ve only talked about Stuhlinger’s work on electric propulsion here, his contribution to space sciences was extensive, ranging from a staging system crucial to Explorer 1 (this involved his pushing a button at the precise time required, hence his nickname as ‘the man with the golden finger’), to his work as director of the Marshall Space Flight Center Science Laboratory, which involved an active role in plans for lunar exploration.

For his contributions to electric propulsion, the Electric Rocket Propulsion Society renamed its award for outstanding achievement as the Stuhlinger Medal after his death. In terms of his visibility to the public, those interested in space advocacy will know about his letter to Sister Mary Jucunda, a nun based in Zambia, which laid out to a profound skeptic the rationale for pursuing missions to far destinations at a time of global crisis.

Image: In the above photo, taken at the Walt Disney Studios in California, Wernher von Braun (right) and Ernst Stuhlinger are shown discussing the technology behind nuclear-electric spaceships designed to undertake the mission to the planet Mars. As a part of the Disney ‘Tomorrowland’ series on the exploration of space, the nuclear-electric vehicles were shown in the program “Mars and Beyond,” which first aired in December 1957. Credit: NASA MSFC.

In the next post, I want to look at the deep space applications that Maraqten and Genovese considered in their IAC presentation.

For more details on Stuhlinger’s Mars ship, see Adam Crowl’s Stuhlinger Mars Ship Paper, and the followup I wrote in these pages back in 2015, Ernst Stuhlinger: Ion Propulsion to Mars. The Maraqten & Genovese paper is “Advanced Electric Propulsion Concepts for Fast Missions to the Outer Solar System and Beyond,” 73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022 (available here). Ernst Stuhlinger’s paper on nuclear-electric propulsion is “Electrical Propulsion System for Space Ships with Nuclear Source,” appearing in the Journal of Astronautics Vol. 2, June 1955, p. 149, and available in manuscript form here. For more background on electric propulsion, see Choueiri, E., Y., “A Critical History of Electric Propulsion: The First 50 Years (1906-1956),” Journal of Propulsion and Power, vol. 20, pp. 193-203, 2004.

tzf_img_post