The question of infrastructure haunts the quest to achieve interstellar flight. I’ve always believed that we will develop deep space capabilities not only for research and commerce but also as a means of defense, ensuring that we will be able to change the trajectories of potentially dangerous objects. But consider the recent Breakthrough Starshot discussion. There I noted that we might balance the images we could receive through Starshot’s sails with those we could produce through telescopes at the Sun’s gravitational focus.

Without the infrastructure issue, it would be a simple thing to go with JPL’s Solar Gravitational Lens concept since the target, somewhere around 600 AU, is so much closer, and could produce perhaps even better imagery. But let’s consider Starshot’s huge photon engine in the Atacama desert not as a one-shot enabler for Proxima Centauri, but as a practical tool that, once built, will allow all kinds of fast missions within the Solar System. The financial outlay supports Oort Cloud exploration, fast access to the heliopause and nearby interstellar space, and planetary missions of all kinds. Add atmospheric braking and we can consider it as a supply chain as well.

Robert Freeland, who has labored mightily in the Project Icarus Firefly design, told the Interstellar Research Group’s recent meeting in Montreal about work he is doing within the context of the British Interplanetary Society’s BIS SPACE project, whose goal is to consider the economic drivers, resources, transportation issues and future population growth that would drive an interplanetary economy. That Solar System-wide infrastructure in turn feeds interstellar capabilities, as it generates new technologies that funnel into propulsion concepts. A case in point: In-space fusion.

To make our engines go, we need fuel, an obvious point and a telling one, since the kind of fusion Freeland has been studying for the Firefly design is limited by our current inability to extract enough Helium-3 to use aboard an interstellar craft. Firefly would use Z-pinch fusion – this is a way of confining plasma and compressing it. An electrical current fed into the plasma generates the magnetic fields that ‘pinch,’ or compress the plasma, creating the high temperatures and pressures that can produce fusion.

I was glad to see Freeland’s slides on the fusion fuel possibilities, a helpful refresher. The easiest fusion reactions, if anything about fusion can be called ‘easy,’ is that of deuterium with tritium, with the caveat that this reaction produces most of its energies in neutrons that cannot produce thrust. Whereas the reaction of deuterium with helium-3 releases primarily charged particles that can be shaped into thrust, which is why it was D/He3 fusion that was chosen by the Daedalus team for their gigantic starship design back in the 1970s. Along with that choice came the need to find the helium-3 to fuel the craft. The Daedalus team, ever imaginative, contemplated mining the atmospheres of the gas giants, where He3 can be found in abundance.

The lack of He-3 caused Icarus to choose a pure deuterium fuel (DD). Freeland ran through the problems with DD, noting the abundance of produced neutrons and the gamma rays that result from shielding these fast neutrons. The reaction also produces so-called bremsstrahlung radiation, which emerges in the form of x-rays. Thus the Firefly design stripped down what would otherwise be a significant portion of its mass in shielding by going to what Freeland calls ‘distance shielding,’ meaning minimal structure that allows the radiation to escape into space.

A starship using deuterium and helium-3 minimizes the neutron radiation, so the question becomes, when do we close the gap in our space capabilities to the point that we can extract helium-3 in the quantities needed from planets like Uranus? I see BIS SPACE as seeking to probe what the Daedalus team described as a Solar System-wide economy, and to put some numbers to the question of when this capability would evolve. The question is given point in terms of interstellar probes because while Firefly had been conceived as a starship that could launch before 2100, it seemed likely that helium-3 simply wouldn’t be available in sufficient quantities. So when would it be?

To create an infrastructure off-planet, we’ll need human migration outward, beginning most likely with orbital habitats not far from Earth – think of the orbital environments conceived by Gerard O’Neill, with their access to the abundant resources of the inner system. Freeland imagines future population growth moving further out over the course of the next 20,000 years until the Solar System is fully exploited. In four waves of expansion, he sees the era of chemical and ion rocketry, and perhaps beamed propulsion, to about 2050, with the second generation largely using fission-powered craft, in a phase ending in about 2200. 2200 to 2500 taps fusion energies (DD), while the entire Solar System is populated after 2500, with mining of the gas giants possible.

Let’s pause for a moment on the human population’s growth, because the trends noted in the image below, although widely circulated, seem not to be widely known. We’re looking here at the growth rate of our species and its acceleration followed by its long decline. As Freeland pointed out, the UN expects world population to peak at between 10 and 12 billion perhaps before the end of this century. After that, increase in the population is by no means assured. So much for the scenario that we have to go off-planet because we will simply overwhelm resources here with our numbers.

Image: In both this and the image below I am drawing from Freeland’s slides.

You would think this Malthusian notion would have long ago been discredited, but it is surprisingly robust. Even so, orbital habitats near Earth can potentially re-create basic Earth-like conditions while exploiting material resources in great abundance and solar power, with easy access to space for moving the wave of innovation further out. BIS SPACE looks with renewed interest at these O’Neill habitats in its first wave of papers.

The larger scenario plays out as follows: In the second half of our century, we move development largely to high Earth orbit, with materials drawn mostly from the Moon, using transport of goods by nuclear-powered cargo ships. The third generation creates orbital habitats at all the inner planets (and Ceres) and perhaps near-Earth asteroids using DD fusion propulsion, while the fourth generation takes in the outer planets and their moons. At this point we can set up the kind of aerostat mining rigs in the upper gas giant atmospheres that would enable the collection of helium-3. Here again we have to make comparisons with other technologies. Where will beamed spacecraft capabilities be by the time we are actively mining He-3 in the outer Solar System?

I’ve simplified the details on expansion greatly, and send you to Freeland’s slides for the details. But I want to circle back to Firefly. Using DD fusion, Firefly’s radiator and coolant requirements are extreme (480 tonnes of beryllium coolant!) But move to the deuterium/helium-3 reaction and you drop radiation output by 75 percent while increasing exhaust velocity. Beryllium can be replaced with less expensive aluminum and the physical size of the vessel is greatly reduced. This version of Firefly gets to Alpha Centauri in the same time using 1/5th the fuel and 1/12th the coolant.

In other words, the sooner we can build the infrastructure allowing us to mine the critical helium-3, the sooner we can drop the costs of interstellar missions and expand their capabilities using fusion engines. If such a scenario plays out, it will be fascinating to see how the population growth curves for the entire Solar System track given access to abundant new resources and the technologies to exploit them. If we can imagine a Solar System-wide human population in the range of 100 billion, we can also imagine the growth of new propulsion concepts to power colonization outside the system.