What an interesting object Methone is. Discovered by the Cassini imaging team in 2004 along with the nearby Pallene, this moon of Saturn is a scant 1.6 kilometers in radius, orbiting between Mimas and Enceladus. In fact, Methone, Pallene and another moon called Anthe all orbit at similar distances from Saturn and are dynamically jostled by Mimas. What stands out about Methone is first of all its shape and, perhaps even more strikingly, the smoothness of its surface. We’d like to know what produces this kind of object and would also like to retrieve imagery of both Pallene and Anthe. If something this strange has equally odd companions, is there something about its relationship with both nearby moons and Saturn’s rings that can produce this kind of surface?

Image: It’s difficult not to think of an egg when looking at Saturn’s moon Methone, seen here during a Cassini flyby of the small moon. The relatively smooth surface adds to the effect created by the oblong shape. NASA/JPL-Caltech/Space Science Institute.

Our path to interstellar missions will see us ramp up the velocities of our probes to objects in our own system, made more accessible by shorter mission times, sail technologies and miniaturization. There is no shortage of targets between high-interest moons like Europa, Titan and Enceladus and Kuiper Belt Objects like Arrokoth. For that matter, the interstellar interloper ‘Oumuamua may yet be within range of faster missions (and in fact we’ll be examining ‘Oumuamua prospects in at least one upcoming article). But the point is that intermediate steps to interstellar will enhance exploration of objects we’ve already visited and take us to numerous others.

One way to proceed is discussed by Greg Matloff and Les Johnson in a recent paper for the Journal of the British Interplanetary Society that grew out of a presentation at the 6th International Space Sailing Symposium this summer. Here the idea is to adjust the parameters of a solar sail so that a balance is achieved between the gravitational force of the Sun and the solar photon radiation impinging upon it. The parameters are clear enough: We need a sail of a specific thickness (areal density), and tightly constrained figures for its reflectance and absorbance. We want to cancel out the gravitational acceleration imposed by the Sun through the propulsive effects of solar photons, allowing us to effectively ‘hover’ in place.

Hovering isn’t traveling, but bear with me. We’ve looked at this kind of sail configuration before and discussed its development in the hands of Robert Forward. It was Forward who dubbed the configuration a ‘statite,’ implying that when the force on the sail from solar radiation exactly balances the gravitational force acting upon it, the spacecraft is effectively in what the paper calls a ‘force-free environment.’

This gets interesting in terms of fast probes because while the statite is normally considered to remain stationary (and it will do so when the sail is stationary relative to the Sun during sail deployment), something else happens when the craft is orbiting the Sun when the sail is deployed. The sail now moves in a straight line at its orbital velocity at the time of deployment. The authors style this ‘rectilinear sun-diving.’ As Matloff noted in an email the other day:

“To do this operationally, it is necessary to maintain the sail normal to the Sun – broadside facing the Sun – during the acceleration process. The sail moves off at its velocity relative to the Sun at sail deployment because radiation pressure force on the sail balances solar gravitational attraction. This is a consequence of Newton’s First Law.”

Using this method we can fling the sail and payload outward. What is known as the sail’s lightness factor is the ratio of solar radiation forces divided by the solar gravitational force, and in the case of the rectilinear trajectory described above, the lightness factor is 1. So consider a sail being deployed from a circular orbit of the Sun at 1 AU. The statite, free of other forces, now moves out on a rectilinear trajectory at 30 kilometers per second, which is the Earth’s orbital velocity. The number is noteworthy because it practically doubles the interstellar velocity of Voyager 1. Matloff and Johnson point out that at this velocity, the Sun’s gravitational focus at 550 AU is reachable in 87 years.

Moving at the same pace gets us to Saturn (and the interesting Methone) in 1.5 years. I’m going to run through the other two scenarios the scientists consider to show the range of possibilities. Assume an orbit that is not circular but rather one having a perihelion of 0.7 AU and aphelion at 1 AU. Deploying the sail at perihelion allows the spacecraft to reach 38 kilometers per second, getting to the inner gravitational focus in about 66 years. Finally, with an aphelion at 1 AU and perihelion at 0.3, our craft achieves a velocity after sail deployment of 66 km/sec, reaching the focus in 38 years.

As regards to ‘Oumuamua, the third scenario, with sail deployment at perihelion some 0.3 AU out from the Sun, achieves enough interstellar cruise velocity to catch the object roughly around 2045, when it will be some 220 AU from the Sun. To these times, of course, must be added the time needed to move the sail from aphelion to the sail deployment point at perihelion, but the numbers are still quite satisfactory.

This is especially true given that we are talking about relatively near-term technologies that are under active development. Matloff and Johnson calculate using an areal mass thickness of 1.46 X 10-3kg/m2 for the proposed missions. They show current state of the art solar sail film as 1.54 X 10-3kg/m2 (this does not include deployment mechanisms, structure, etc). The point is clear, however: Achieving 30 km/sec or more offers us fast passage to targets within the outer Solar System as we analyze options for missions beyond it, using technologies that are not far removed from present capability.

The authors note that we can’t assume a constant value for solar radiation; the solar constant actually varies by about 0.1% in response to the Sun’s activity cycle. Hence the need to explore options like adjusting the curvature of the sail or using reflective vanes for fine-tuning. Controlling the sail will obviously be critical. The paper continues:

Control of the sail depends upon the ability of the system to dynamically adjust the center of mass (CM) versus the center of (photon) pressure (CP). Any misalignment of the CM versus the CP will induce torques in the sail system that have to be actively managed lest the offset result in an eventual loss of control. The sail will encounter micrometeorites and interplanetary dust during flight that will create small holes in the fabric, changing its reflectivity asymmetrically and inducing unwanted torques. Depending upon how the sail is packaged and deployed, there may also be fold lines, wrinkles, and small tears that occur with similar end results.

Hence the need for a momentum management system, which could involve possibilities like reflective control devices for roll or diffractive sail materials that manipulate the exit direction of incoming photons as needed to counter these effects. The authors point out that the solar sail propulsion systems for this kind of mission are at TRL-6 despite recent failures such as the loss of the Near-Earth Asteroid Scout Cubesat mission, which carried an 86 square meter solar sail that was lost after launch in late November 2022. With solar sails under active development, however, the prospect for exploring rectilinear sundiver missions in the near term seems quite plausible.

The paper is Matloff & Johnson, “Breakthrough Sun Diving: The Rectilinear Option,” Journal of the British Interplanetary Society Vol. 76 (2023), 283-287.