Reaching ‘Oumuamua through some kind of statite technology, an idea we’ve been kicking around recently, brings up the interesting work of Richard Linares at MIT, who has been working on a “dynamic orbital slingshot” for rendezvous with future objects from the interstellar depths (ISOs). Linares received a Phase I grant from the NASA Innovative Advanced Concepts (NIAC) Program to pursue the idea of a network of statites on sentry duty, any one of which could release the stored energy of the sail to enter a trajectory that would take it to a flyby of an object entering our system on a hyperbolic orbit.

The concept is simplicity itself, once you realize that a statite balances the pressure of solar photons against the Sun’s gravitational pull, and essentially hovers in place. As I mentioned when covering Greg Matloff and Les Johnson’s paper on using statites to achieve fast rectilinear trajectories to reach interstellar interlopers, Robert Forward was the one who came up with the idea and practical uses for it. He could envision, for example, communications satellites in polar position to cover high latitudes on Earth.

Here’s what Forward said about the statite concept in his wonderful essay collection Indistinguishable from Magic (1995):

…I have the patent on it — U.S. Patent 5,183,225 “Statite: Spacecraft That Utilizes Light Pressure and Method of Use”… The unique concept described in the patent is to attach a television broadcast or weather surveillance spacecraft to a large highly reflective lightsail, and place the spacecraft over the polar regions of the Earth with the sail tilted so the light pressure from the sunlight reflecting off the lightsail is exactly equal and opposite to the gravity pull of the Earth.

You can see why we need a new term here. If you deploy a sail in the configuration Forward describes, it essentially sits over the polar region while the Earth rotates below it. In other words, technically it is not a satellite. ‘Statite’ is a Forward coinage to describe such a hovering object in space. He wrote of a statite he dubbed the ‘Hovering Hawke’ in one of his short stories. It would be placed too far from the surface to be effective as a communications satellite, but could offer direct broadcasting to places on Earth that are without that capability. Weather surveillance is another use.

Polesitters become interesting when we consider the nature of a geostationary orbit. Put a satellite directly over the equator at 35,786 kilometers altitude and it will appear stationary over the Earth, a useful trait for communications. But the satellite must be positioned directly above the equator, matching Earth’s rotation, to maintain its position relative to the surface.

If we put our satellite at an angle relative to the equator, its apparent motion on Earth will be a figure eight, in what is called an inclined geosynchronous (not geostationary) orbit. That’s useful for areas not covered by geostationary satellites but not good enough for continuous coverage of a specific area, especially the more latitudinally challenged regions like the poles, and that’s why the polesitter is attractive. It can give us continuous coverage even when the region it sits above is far from the equator.

Image: Analog‘s December, 1990 issue contained an article by Robert Forward describing the ‘polesitter’ concept, one of many innovative ideas the scientist introduced to a broad audience. Credit: Condé Nast.

There’s always a catch, and here’s the catch with polesitters, as Forward explained it in his article. When the summer months arrive and the polar regions are in sunlight, keeping the statite precisely balanced (to maintain the hover) becomes quite tricky. He saw that such seasonal instability demanded that a statite be relatively far from Earth, and calculated that it cannot get any closer than 250 Earth radii to the surface.

But Linares and team are not thinking about statites supplying services to Earth. The NIAC work explores using statites to set up an early warning system for interstellar objects, one that will allow fast intercepts before these interlopers blow through our system and return to interstellar space. Consider what happens when we ‘turn off’ the statite capability on our satellite (as from rotating the sail to an edge-on position, for example, or simply releasing a CubeSat). At this point, the released object has no forces impinging upon it but gravity. Let me quote Linares from a white paper on the subject:

…a statite at 1 AU has a free-fall trajectory of about 64 days. This fast response time to a potential ISO can be thought of as a slingshot effect, since the solar sail is used to “store energy” that is released when desired. Additionally, to achieve a flyby some Delta-V is required to adjust from the free-fall path to a flyby trajectory. The proposed mission for the statite concept is to utilize a constellation of such devices to achieve wider coverage over a spherical region of 1 AU for potential ISO missions. Additionally, the orbital plane can be adjusted with relatively low Delta-V.

Image; A constellation of statites as envisioned by Richard Linares for intercepting a future interstellar interloper. Credit: MIT/Richard Linares.

The levitating sail has an inertial velocity of zero, and when released from ‘hover,’ it enters a Keplerian orbit. So as Linares points out, we can turn any one of the statites in our constellation of statites into a ‘sundiver,’ hurtling toward the Sun before its trajectory is adjusted by use of the sail (or perhaps other propulsion). Which statite is deployed simply depends upon the optimum trajectory to the incoming ISO.

We are now on a fast track toward reaching the interstellar object with at least a flyby. Linares calls this a “dynamic orbital slingshot for rendezvous with interstellar objects.” And the idea is to have a constellation of these statites always at the ready for the next ‘Oumuamua. Or, considering how odd ‘Oumuamua seems to be, perhaps I should say “the next Borisov.” Even so, with this net, who knows what we might catch?

The paper makes the case that a statite free-falling toward the Sun from an initial position at 1 AU and then deploying its sail away from the Sun at perihelion can achieve speeds of up to 25 AU/year, making it possible to deliver payloads to the outer Solar System. Now we’re in Matloff/Johnson ‘sundiver’ territory. Voyager 1 has reached 3.6 AU per year by comparison, making the statite concept attractive beyond its value as a station-keeper for quick response missions to interstellar comets/asteroids.

For more on Richard Linares’ work, see “Rendezvous Mission for Interstellar Objects Using a Solar Sail-based Statite Concept,” a white paper available on arXiv.