An old pal from high school mentioned in an email the other day that he had an interest in Adam Frank’s work, which we’ve looked at in these pages a number of times. Although my most recent post on Frank involves a 2022 paper on technosignatures written with Penn State’s Jason Wright, my friend was most intrigued by a fascinating 2018 paper Frank wrote for the International Journal of Astrobiology (citation below). The correspondence triggered thoughts of other, much earlier scientists, particularly of Charles Lyell’s Principles of Geology (1830-1833), which did so much to introduce the concept of ‘deep time’ to Europe and played a role in Darwin’s work. Let’s look at both authors, with a nod as well to James Hutton, who largely originated the concept of deep time in the 18th Century.

Adam Frank is an astrophysicist at the University of Rochester, and one of those indispensable figures who meshes his scientific specialization (stellar evolution) with a broader view that encompasses physics, cultural change and their interplay in scientific discourse. He fits into a niche of what I think of as ‘big picture’ thinkers,’ scientists who draw out speculation to the largest scales and ponder the implications of what we do and do not know about astrophysics for a species that may spread into the cosmos.

Now in the case of my friend’s interest, the picture is indeed big. Frank’s 2018 paper asked whether our civilization is the first to emerge on Earth. Thus the ‘Silurian’ hypothesis, explored on TV’s Doctor Who in reference to a race of intelligent reptiles by that name who are accidentally awakened. The theme pops up occasionally in science fiction, though perhaps less often that one might expect. James Hogan’s 1977 novel Inherit the Stars, for example, posits evidence for unknown technologies discovered on the Moon that apparently have their origin in an earlier geological era.

Image: Astrophysicist Adam Frank. Credit: University of Rochester.

I won’t go through this paper closely because I’ve written it up before (see Civilization before Homo Sapiens?), but this morning I want to reflect on the implications of the question. For it turns out that if, say, a species of dinosaur had evolved to the point of creating technologies and an industrial civilization, finding evidence of it would be an extremely difficult thing. So much so that I find myself reflecting on deep time in much the same way that I reflect on the physical cosmos and its seemingly endless reach.

Consider that we can trace our species back in the Quaternary (covering the last 2.6 million years or so) and find evidence of non-Homo Sapiens cultures, among which the Neanderthals are the most famous, along with the Denisovians. Bipedal hominids show up at least as far back as the Laetoli footprints in Tanzania, which date to 3.7 million years ago and were apparently produced by Australopithecus afarensis. Frank and co-author Gavin Schmidt also note that the largest ancient surface still available for study on our planet is in the Negev Desert, dating back about 1.8 million years.

These are impressive numbers until we put them into context. The Earth is some 4.5 billion years old, and complex life on land has existed for about 400 million of those years. Let’s also keep in mind that agriculture emerged perhaps 12,000 years ago in the Fertile Crescent, and in terms of industrial technologies, we’ve only been active for about 300 years (the authors date this from the beginning of mass production methods). Tiny slivers of time, in other words, amidst immense timeframes.

So as Frank and Schmidt point out, we’re talking about fractions of fractions here. There is a fraction of life that gets fossilized, which in all cases is tiny and also varies according to tissue, bone structure, shells and so forth, and also varies from an extremely low rate in tropical environments to a higher rate in dry conditions or river systems. The dinosaurs were active on Earth for an enormous period of time, from the Triassic to the end-Cretaceous extinction event, something in the range of 165 million years. Yet only a few thousand near-complete dinosaur specimens exist for this entire time period. Would homo sapiens even show up in the future fossil record?

From the paper:

The likelihood of objects surviving and being discovered is similarly unlikely. Zalasiewicz (2009) speculates about preservation of objects or their forms, but the current area of urbanization is <1% of the Earth’s surface (Schneider et al., 2009), and exposed sections and drilling sites for pre-Quaternary surfaces are orders of magnitude less as fractions of the original surface. Note that even for early human technology, complex objects are very rarely found. For instance, the Antikythera Mechanism (ca. 205 BCE) is a unique object until the Renaissance. Despite impressive recent gains in the ability to detect the wider impacts of civilization on landscapes and ecosystems (Kidwell, 2015), we conclude that for potential civilizations older than about 4 Ma, the chances of finding direct evidence of their existence via objects or fossilized examples of their population is small.

Image: The Cretaceous-aged rocks of the continental interior of the United States–from Texas to Montana–record a long geological history of this region being covered by a relatively shallow body of marine water called the Western Interior Seaway (WIS). The WIS divided North America in two during the end of the age of dinosaurs and connected the ancient Gulf of Mexico with the Arctic Ocean. Geologists have assigned the names “Laramidia” to western North America and “Appalachia” to eastern North America during this period of Earth’s history. If a species produced a civilization in this era, would we be able to find evidence of it? Credit; National Science Foundation (DBI 1645520). The Cretaceous Atlas of Ancient Life is one component of the overarching Digital Atlas of Ancient Life project. CC BY-NC-SA 4.0 DEED.

Intriguing stuff. The authors advocate exploring the persistence of industrial byproducts in ocean sediment environments, asking whether byproducts of common plastics or organic long-chain synthetics will be detectable on million-year timescales. They also propose a deeper dive into anomalies in current studies of sediments, the same sort of analysis that has been done, for example, in exploring the K-T boundary event but broadened to include the possibility of an earlier civilization. I send you to the paper, available in full text, for discussion of such testable hypotheses.

Back to deep time, though, and the analogy of looking ever deeper into the night sky. In asking how long a civilization can survive (Drake’s L term in the famous equation), we ask whether we are likely to find other civilizations given that over billion year periods, they may last only as a brief flicker in the night. We have no good idea of what the term L should be because we are the only civilization we know about. But if civilizations can emerge more than once on the same world, the numbers get a little more favorable, though still daunting. A given star may be circled by a planet which has seen several manifestations of technology, a greater chance for our detection.

A cycle of civilization growth and collapse might be mediated by fossil fuel availability and resulting climate change, which in turn could feed changes in ocean oxygen levels. Frank has speculated that such changes could trigger the conditions for creating more fossil fuels, so that the demise of one culture actually feeds the energy possibilities of the next after many a geological era. How biospheres evolve – how indeed they have evolved on our own world – is a question that exoplanet research may help to answer, for we have no shortage of available worlds to examine as our biosignature technologies develop.

Culturally, we must come to grips with these things. In an essay for The Geological Society, British paleontologist Richard Fortey discusses the seminal work of James Hutton and Charles Lyell in the 18th and 19th Centuries in developing the concept of geological time, which John McPhee would present wonderfully in his 1981 book Basin and Range (I remember reading excerpts in The New Yorker). The Scot James Hutton had literary ambitions, publishing his Theory of the Earth in 1795 and changing our conception of time forever. Hutton knew Adam Smith and spent time with David Hume; he would also have been aware of French antecedents to his ideas. But despite its importance, even Lyell would admit that he found Hutton’s book all but unreadable.

It took a friend named John Playfair to turn Hutton’s somnolent prose into the simplified but clear Illustrations of the Huttonian Theory of the Earth in 1802, making the idea of deep time available to a large audience and leading to Lyell. Which goes to show that sometimes it takes a careful popularizer to gain for a scientist the traction his or her work deserves. The emphasis there is on ‘careful.’

Lyell’s Principles of Geology, published in three volumes between 1830 and 1833, famously traveled with Darwin on the Beagle and, as Fortey says, “donated the time frame in which evolution could operate.” He goes on:

“…once the time barrier had been breached, it was only a question of how much time. The stratigraphical divisions of the geological column, the periods such as Devonian or Cambrian, with which we are now so familiar, were themselves being refined and put into the right sequence through the same historical period. Just to have a sequence of labels helped geologists grapple with time, and, in a strange way, labels domesticate time.

But domestication co-exists with wonder. I imagine the most hardened geologist of our day occasionally quakes at the realization of what all those sedimentary layers point to, a chronological architecture — time’s edifice — in which our entire history as a species is but a glinting mote on a rockface of the future. Our brief window today is reminiscent of Hutton and Lyell’s. Like them, we are compelled to adjust to a cosmos that seems to somehow enlarge every time we probe it, inspired by new technologies that give birth to entire schools of philosophy.

John Playfair would write upon visiting Siccar Point, the promontory in Berwickshire that inspired Hutton’s ideas, that “The mind seemed to grow giddy looking so far into the abyss of time.” We are similarly dwarfed by the vistas of the Hubble Ultra Deep Field and the exquisite imagery from JWST. Who knows what we have yet to discover in Earth’s deep past?

The paper is Schmidt and Frank, “The Silurian Hypothesis: Would it be possible to detect an industrial civilization in the geological record?” published online by the International Journal of Astrobiology 16 April 2018 (full text). Gregory Benford’s Deep Time: How Humanity Communicates Across Millennia (Bard, 2001) is a valuable addition to this discourse. For a deeper dive, Fortey mentions Martin Rudwick’s Bursting the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution ( University of Chicago Press, 2007). Fortey’s own Life: A Natural History of the First Four Billion Years of Life on Earth (Knopf, Doubleday 1999) is brilliant and seductively readable.