A kilonova at the wrong place and time would spell trouble for any lifeforms emerging on a planetary surface. Just how we found out about kilonovae and the conditions that create them, not to mention their hypothesized effects, is the subject of Don Wilkins’ latest, a look at Cold War era surveillance that wound up pushing astronomy’s frontiers. That work now causes us to ponder the formation of an ‘island of stability’ in which exists a set of superheavy element isotopes with unique properties. It also raises interesting questions about our Solar System’s history and possible exposure to a nearby event. Based at Washington University in St. Louis, Don’s interest in deep space exploration here probes the formation and structure of matter in processes we’re only beginning to unlock.

by Don Wilkins

Setting out to discover something on Earth can sometimes reveal an unexpected result from a far more interesting source. As a case in point, consider what happened in August of 1963, when Great Britain, the US and the USSR signed a nuclear test ban treaty forbidding nuclear detonations in space or the Earth’s atmosphere. For the older space nerds, this is the same treaty that ended the Orion program. Given the Soviets’ history of violating treaties, the US launched the Vela (derived from the Spanish verb “velar”, to watch) series of satellites designed to monitor compliance with the treaty within two months of the signing. What they found was a bit of a surprise.

The satellites were heavily instrumented with x-ray, gamma-ray, neutron, optical and electromagnetic pulse (EMP) detectors along with other sensors designed to monitor the space environment. The satellites operated in pairs on opposite sides of a circular 250,000 kilometers in diameter orbit, Figure 1.

Figure 1. A Pair of Vela Satellites Readying for Launch. Los Angeles Air Force Base, U.S. Air Force Photo.

X-ray detectors directly sense nuclear blast. Gamma-ray and neutron detector activations would confirm the nuclear event and would prompt a stiffly worded diplomatic note sent to the Soviets. Vela satellites were positioned to monitor the Earth and the far side of the Moon. The latter involved detecting gamma radiation from radioactive debris scattered by a clandestine explosion. As a result of the separation of the satellites and separation in time between sensor triggering on the satellites, the angle to the event could be determined to about one-fifth of a radian or ten degrees. Angles to a single event observed by multiple pairs of satellites could provide a more precise direction to the source.

No diplomatic note concerning illegal nuclear tests was ever sent to the Soviets. Fortunately events which triggered the detectors but were clearly not signatures of nuclear detonations were not discarded. These formed a database which eventually led to the discovery of enormous, but short-lived gamma-ray bursts (GRBs) originating in deep space. GRBs last less than three seconds (although a recent discovery lasted an astounding 200 seconds), yet they are as luminous as 100 million galaxies, the equivalent of a 1000 novae. Gamma-ray sources have temperatures of approximately 109 K degrees and are among the hottest objects ever observed. Compounding the mystery, researchers only had a line pointing to the origin of the bursts but no distance.

GRBs occur daily and are uniformly distributed across the observable Universe. Initially no counterpart of the GRBs operating in the visual spectrum could be found. Then, in 1997, Italian astronomers caught the fading light of an object which could be linked with a GRB, Figure 2.

Figure 2. Left: Arrow points at the GRB optical counterpart. Right: An IR image of the tilted box area in the left image. The optical source is gone, and only a faint image of a very distant galaxy remains. The other two bright sources on the right side are spiral galaxies. Credit: W. M. Keck Observatory / NASA.

The favored explanation for GRBs is the collision of two neutron stars or two black holes. Astronomers named the neutron star mergers kilonovae (KN). In addition to GRBs, these collisions emit high-frequency gravitational waves (GW) and are, through rapid neutron capture (the r-process) nucleosynthesis, likely production sites of heavy elements. [1] A team led by Andres Levan examined spectroscopy of GRB 230307A, a long-duration GRB associated with a kilonova merger. A 2.15 micron emission line from that analysis is associated with tellurium (atomic mass 130), and a mid-IR peak, lanthanides production. GRB nucleosynthesis creates a wide range of atomic masses including heavy elements (mass above iron). [2]

These observations and others support the hypothesis that heavy elements within the Solar System are the remnants of a kilonova.[3-4]

Figure 3 depicts the evolution of a neutron star merger over the course of millennia. The drawing on the left depicts the aftermath a few years after the merger and at dimensions below a parsec. Gamma-rays are emitted in the dynamic ejecta and the hot cocoon. The gamma-ray jet and cocoon emissions are short-lived; the afterglow they produce emits broadband frequencies for several years. The dynamic ejecta include heavy elements which decay in less than a month to produce the UV, optical and IR displays. X-ray emissions, at potentially lethal levels, result from the interaction between the jet and the interstellar medium (ISM).

Figure 3. Structures Resulting from Neutron Star Merger

On the right hand side, a powerful shock wave from the merger produces a bubble in the ISM. Potentially lethal cosmic rays result.

Initial analysis of GRBs focused on the on-axis gamma ray bursts. M.L. Perkins’ team analyzed the data to understand threats by the off-axis emissions and the relation to other cosmic threats. [5]

According to the team:

For baseline kilonova parameters, … the X-ray emission from the afterglow may be lethal out to ∼ 5 pc and the off-axis gamma-ray emission may threaten a range out to ∼ 4 pc, whereas the greatest threat comes years after the explosion, from the cosmic rays accelerated by the kilonova blast, which can be lethal out to distances up to ∼ 11 pc. … . Based on the frequency and potential damage done, the threats in order of most to least harmful are: solar flares, impactors, supernovae, on-axis GRBs, and lastly off-axis BNS mergers.

One question concerns how close to Earth a kilonova may have manifested. The presence of two isotopes, iron-60 (Fe-60) and plutonium-244 (Pu-244) found in ocean sediments deposited 3 to 4 million years ago offers clues. These isotopes are only formed in very energetic processes.

Fe-60 can, in theory, be created in a standard supernova. Pu-244 is created only in specific classes of supernovae or the merger of a neutron star with another astronomical body, the kilonova.

Figure 4. Artist’s impression of a neutron star merger. Credit: University of Warwick / Mark Garlick.

One of the problems was the ratio between the isotopes. Researchers at the Università di Trento found, with a specific debris ejection pattern and a certain tilt of the merger event, the observed ratio of iron to plutonium isotopes could be explained by a kilonova. [6] The scientists examined rare types of supernovae such as a magneto-rotational supernova or collapsar, but concluded the kilonova was the source of the isotopes.

To determine how far from Earth the kilonova occurred, the researchers calculated the different spreads for each element based on the wind speed created by the kilonova. The answer was about 150 to 200 parsecs or about 500 to 600 light years away.

Hydrogen and helium were created with the Big Bang; heavier elements were made by fusion within the interior of stars, supernovae and kilonovae. Data provided by astronomer Jennifer Johnson from Ohio State University was used to produce the periodic table depicting the origins of elements shown in Figure 5 below.

Researchers have examined the heavy element composition of a number of stars, finding that some of these elements are the product of the radioactive decay of previously unobserved elements. [7] These predecessor elements form in a theorized “island of stability” with atomic numbers centered around 126. Isotopes in this region, beyond the fleeting transuranics, are hypothesized to possess “magic numbers” of protons and neutrons that allow them lifespans of thousands or millions of years. The rapid neutron-capture process that occurs in neutron-rich environments of neutron star mergers and supernovae appears inadequate to form the elements in the island of stability. How these transuranics were produced is a mystery.

Figure 5. Origins of Elements – Courtesy NASA’s Goddard Space Flight Center.

The effects of neutron star mergers, like rain, depends on timing. In the early stages of star formation, the collisions shower the clouds of hydrogen and helium with heavy metals necessary for life. Yet after life gained its foothold, an improperly timed – and ill-placed – kilonova could severely damage or erase what a predecessor started.


1. B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent, I. V. Panov, N. T. Zinner, “Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei,” Monthly Notices of the Royal Astronomical Society, Volume 406, Issue 4, August 2010, Pages 2650–2662, https://doi.org/10.1111/j.1365-2966.2010.16864.x

2. Levan, A., Gompertz, B.P., Salafia, O.S. et al. “Heavy element production in a compact object merger observed by JWST.” Nature (2023). https://doi.org/10.1038/s41586-023-06759-1

3. Bartos, I., Marka, S. “A nearby neutron-star merger explains the actinide abundances in the early Solar System.” Nature 569, 85–88 (2019). https://doi.org/10.1038/s41586-019-1113-7

4. Watson, Darach, Hansen, Camilla J., Selsing, Jonatan, et al, “Identification of strontium in the merger of two neutron stars,’ arXiv:1910.10510 [astro-ph.HE], 23 Oct 2019

5. Perkins, M.L., Ellis, John, Fields, B.D, et al, “Could a Kilonova Kill: a Threat Assessment,” arXiv:2310.11627v1, 17 October 2023.

6. Leonardo Chiesa, et al, “Did a kilonova set off in our Galactic backyard 3.5 Myr ago?,” arXiv (2023). DOI: 10.48550/arxiv.2311.17159

7. Ian U. Roederer, et al, “Element abundance patterns in stars indicate fission of nuclei heavier than uranium,” Science, 7 Dec 2023, Vol 382, Issue 6675, pp. 1177-1180, DOI: 10.1126/science.adf1341