Fusion runways remind me of the propulsion methods using pellets that have been suggested over the years in the literature. Before the runway concept emerged, the idea of firing pellets at a departing spacecraft was developed by Clifford Singer. Aware of the limitations of chemical propulsion, Singer first studied charged particle beams but quickly realized that the spread of the beam as it travels bedevils the concept. A stream of macro-pellets, each several grams in size, would offer a better collimated ‘beam’ that would vaporize to create a hot plasma thrust when it reaches the spacecraft.

Even a macro-pellet stream does ‘bloom’ over time – i.e., it loses its tight coherency because of collisions with interstellar dust grains – but Singer was able to show through papers in The Journal of the British Interplanetary Society that particles over one gram in weight would be sufficiently massive to minimize this. In any case, collimation could also be ensured by electromagnetic fields sustained by facilities along the route that would measure the particles’ trajectory and adjust it.

Image: Clifford Singer, whose work on pellet propulsion in the late 1970s has led to interesting hybrid concepts involving on-board intelligence and autonomy. Credit: University of Illinois.

Well, it was a big concept. Not only did Singer figure out that it would take a series of these ‘facilities’ spaced 340 AU apart to keep the beam tight (he saw them as being deployed by the spacecraft itself as it accelerated), but it would also take an accelerator 105 kilometers long somewhere in the outer Solar System. That sounds crazy, but pushing concepts forward often means working out what the physics will allow and thus putting the problem into sharper definition. I’ve mentioned before in these pages that we have such a particle accelerator in the form of Jupiter’s magnetic field, which is fully 20,000 times stronger than Earth’s.

We don’t have to build Jupiter, and Mason Peck (Cornell University) has explored how we could use its magnetic field to accelerate thousands of ‘sprites’ – chip-sized spacecraft – to thousands of kilometers per second. Greg Matloff has always said how easy it is to overlook interstellar concepts that are ‘obvious’ once suggested, but it takes that first person to suggest them. Going from Singer’s pellets to Peck’s sprites is a natural progression. Sometimes nature steps in where engineering flinches.

The Singer concept is germane here because the question of fusion runways depends in part upon whether we can lead our departing starship along so precise a trajectory that it will intercept the fuel pellets placed along its route. Gerald Nordley would expand upon Singer’s ideas to produce a particle stream enlivened with artificial intelligence, allowing course correction and ‘awareness’ at the pellet level. Now we have a pellet that is in a sense both propellant and payload, highlighting the options that miniaturization and the growth of AI have provided the interstellar theorist.

Image: Pushing pellets to a starship, where the resulting plasma is mirrored as thrust. Nordley talks about nanotech-enabled pellets in the shape of snowflakes capable of carrying their own sensors and thrusters, tiny craft that can home in on the starship’s beacon. Problems with beam collimation thus vanish and there is no need for spacecraft maneuvering to stay under power. Credit: Gerald Nordley.

Jordin Kare’s contributions in this realm were striking. A physicist and aerospace engineer, Kare spent years at Lawrence Livermore National Laboratory working on early laser propulsion concepts and, in the 1980s, laser-launch to orbit, which caught the attention of scientists working in the Strategic Defense Initiative. He would go on to become a spacecraft design consultant whose work for the NASA Institute for Advanced Concepts (as it was then called) analyzed laser sail concepts and the best methods for launching such sails using various laser array designs.

Kare saw ‘smart pellets’ in a different light than previous researchers, thinking that the way to accelerate a sail was to miniaturize it and bring it up to a percentage of c close to the beamer. This notion reminds me of the Breakthrough Starshot sail concept, where the meter-class sails are blasted up to 20 percent of lightspeed within minutes by a vast laser array. But Kare would have nothing to do with meter-class sails. His notion was to make the sails tiny, craft them out of artificial diamond (he drew this idea from Robert Forward) and use them not as payload but as propulsion. His ‘SailBeam’, then, is a stream of sails that, like Singer’s pellets, would be vaporized for propulsion as they arrived at a departing interstellar probe.

Kare was a character, to put it mildly. Brilliant at what he studied, he was also a poet well known for his ‘filksongs,’ the science fiction fandom name for SF-inspired poetry, which he would perform at conventions. His sense of humor was as infectious as his optimism. Thus his DIHYAN, a space launch concept involving reusable rockets (if he could only see SpaceX’s boosters returning after launch!). DIHYAN, in typical Kare fashion, stood for “Do I Have Your Attention Now?” Kare’s role in the consideration of macro-scale matter sent for propulsion is secure in the interstellar literature.

And by the way, when I write about Kare, I’m always the recipient of email from well-meaning people who tell me that I’ve misspelled his name. But no, ‘Jordin’ is correct.

We need to talk about SailBeam at greater length one day soon. Kare saw it as “the most engineering-practical way to get up to a tenth of the speed of light.” It makes sense that a mind so charged with ideas should also come up with a fusion runway that drew on his SailBeam thinking. Following on to the work of Al Jackson, Daniel Whitmire and Greg Matloff, Kare saw that if you could place pellets of deuterium and tritium carefully enough, a vehicle initially moving at several hundreds of kilometers per second would begin encountering them with enough velocity to fire up its engines. He presented the idea at a Jet Propulsion Laboratory workshop in the late 1980s.

We’re talking about an unusual craft, and it’s one that will resonate not only with Johndale Solem’s Medusa, which we’ll examine in the next post, but also with the design shown in the Netflix version of Liu Cixin’s The Three Body Problem. This was not the sleek design familiar from cinema starships but a vehicle shaped more or less like a doughnut, although a cylindrical design was also possible. Each craft would have its own fusion pellet supply, dropping a pellet into the central ‘hole’ as one of the fusion runway pellets was about to be encountered. Kare worked out a runway that would produce fusion explosions at the rate of thirty per second.

Like Gerald Nordley, Kare worried about accuracy, because each of the runway pellets has to make a precise encounter with the pellet offered up by the starship. When I interviewed him many years back, he told me that he envisioned laser pulses guiding ‘smart’ pellets. Figure that you can extract 500 kilometers per second from a close solar pass to get the spacecraft moving outward at sufficient velocity (a very optimistic assumption, relying on materials technologies that are beyond our grasp at the moment, among other things), and you have the fusion runway ahead of you.

Initial velocity is problematic. Kare believed the vehicle would need to be moving at several hundreds of kilometers per second to attain sufficient velocity to begin firing up its main engines as it encountered the runway of fusion pellets. Geoff Landis would tell me he thought the figure was far too low to achieve deuterium/tritium ignition. But if it can be attained, Kare’s calculations produced velocities of 30,000 kilometers per second, fully one-tenth the speed of light. The fusion runway would extend about half a light day in length, and the track would run from near Earth to beyond Pluto’s orbit.

And there you have the Bussard Buzz Bomb, as Kare styled it. The reference is of course to the German V-1, which made a buzzing, staccato sound as it moved through English skies that those who heard it would come to dread, because when the sound stopped, you never knew where it would fall. You can’t hear anything in space, but if you could, Kare told me, his starship design would sound much like the V-1, hence the name.

In my next post, I’ll be talking about Johndale Solem’s Medusa design, which uses nuclear pulse propulsion in combination with a sail in startling ways. Medusa didn’t rely on a fusion runway, but the coupling of this technology with a runway is what started our discussion. The Netflix ‘3 Body Problem’ raised more than a few eyebrows. I’m not the only one surprised to see the wedding of nuclear pulse propulsion, sails and runways in a single design.

Clifford Singer’s key paper is “Interstellar Propulsion Using a Pellet Stream for Momentum Transfer,” JBIS 33 (1980), pp. 107-115. He followed this up with “Questions Concerning Pellet-Stream Propulsion,” JBIS 34 (1981), pp. 117-119. Gerald Nordley’s “Interstellar Probes Propelled by Self-steering Momentum Transfer Particles” (IAA-01-IAA.4.1.05, 52nd International Astronautical Congress, Toulouse, France, 1-5 Oct 2001) offers his take on self-guided pellets. Jordin Kare’s report on SailBeam concepts is “High-Acceleration Micro-Scale Laser Sails for Interstellar Propulsion,” Final Report, NIAC Research Grant #07600-070, revised February 15, 2002 and available here. You might also enjoy my SailBeam: A Conversation with Jordin Kare.