The Prevalence of ‘Jupiters’ around Larger Stars

Work on the Centauri Dreams internals continues, with the unwelcome result that the site has been popped offline twice because of a possible security problem. Needless to say, this has to be resolved before I can move forward on other aspects of the rebuild. While I deal with that issue, let me respond to a few backchannel questions about yesterday’s post on gas giants in red dwarf planetary systems. What I’m being asked about is my comment that gas giants like Jupiter, at similar distances and installation, around other classes of stars are common compared to what we see at red dwarfs. This has been a problematic issue, and the matter is a long way from achieving a consensus among researchers. A moment’s reflection yields the reason: Finding gas giants in outer system orbits around a star like the Sun is no easy matter. Radial velocity is most sensitive when dealing with large planets in tight orbits, which is why the first detections in main sequence stellar systems, beginning back...

read more

A Scarcity of ‘Jupiters’ in Red Dwarf Systems

Gas giant worlds like Jupiter may be uncommon around red dwarf stars, as a number of recent studies have found. It would be useful to tighten up the data, however, because many of the papers on this matter have used stellar samples at the high end of the mass range of M-dwarfs. At the Center for Astrophysics | Harvard & Smithsonian (CfA), Emily Pass and colleagues have gone to work on the question by looking at lower-mass M-dwarfs and working with a lot of them, some 200 in their sample, all within 15 parsecs. The question is not purely academic, for some scientists suggest that the presence of a Jupiter-class planet – not uncommon around G-class stars like the Sun – is a factor in the development of life. Migrating inward from a formation in the first few hundred million years of the Solar System’s existence, Jupiter would have stirred up plenty of icy cometary bodies through gravitational interactions. Impacts from this infall into the inner system likely delivered a great deal...

read more
GJ 486b: An Atmosphere around a Rocky M-dwarf Planet?

GJ 486b: An Atmosphere around a Rocky M-dwarf Planet?

I might have mentioned the issues involving the James Webb Space Telescope’s MIRI instrument in my earlier post on in-flight maintenance and repair. MIRI is the Mid-Infrared Instrument that last summer had issues with friction in one of the wheels that selects between short, medium and longer wavelengths. Now there seems to be a problem, however slight, that affects the amount of light registered by MIRI’s sensors. The problems seem minor and are under investigation, which is a good thing because we need MIRI’s capabilities to study systems like GJ 486, where a transiting rocky exoplanet may or may not be showing traces of water in an atmosphere that may or may not be there. MIRI should help sort out the issue, which was raised through observations with another JWST instrument, the Near-Infrared Spectrograph (NIRSpec). The latter shows tantalizing evidence of water vapor, but the problem is untangling whether that signal is coming from the rocky planet or the star. This points to an...

read more

GJ 486b: An Atmosphere around a Rocky M-dwarf Planet?

I might have mentioned the issues involving the James Webb Space Telescope’s MIRI instrument in my earlier post on in-flight maintenance and repair. MIRI is the Mid-Infrared Instrument that last summer had issues with friction in one of the wheels that selects between short, medium and longer wavelengths. Now there seems to be a problem, however slight, that affects the amount of light registered by MIRI’s sensors. The problems seem minor and are under investigation, which is a good thing because we need MIRI’s capabilities to study systems like GJ 486, where a transiting rocky exoplanet may or may not be showing traces of water in an atmosphere that may or may not be there. MIRI should help sort out the issue, which was raised through observations with another JWST instrument, the Near-Infrared Spectrograph (NIRSpec). The latter shows tantalizing evidence of water vapor, but the problem is untangling whether that signal is coming from the rocky planet or the star. This points to an...

read more
Sherlock Holmes and the Case of the Spherical Lens: Reflections on a Gravity Lens Telescope (Part I)

Sherlock Holmes and the Case of the Spherical Lens: Reflections on a Gravity Lens Telescope (Part I)

A growing interest in JPL's Solar Gravitational Lens mission here takes Wes Kelly on an odyssey into the past. A long-time Centauri Dreams contributor, Wes looks at the discovery of gravitational lensing, which takes us back not only to Einstein but to a putative planet that never existed. Part II of the essay, which will run in a few days, will treat the thorny issues lensing presents as we consider untangling the close-up image of an exoplanet, using an observatory hundreds of AU from the Sun. Wes has pursued a lifetime interest in flight through the air, in orbit and even to the stars. Known on Centauri Dreams as ‘wdk,’ he runs a small aerospace company in Houston (Triton Systems,LLC), founded for the purpose of developing a partially reusable HTOL launch vehicle for delivering small satellites to space. The company also provides aerospace engineering services to NASA and other customers, starting with contracts in the 1990s. Kelly studied aerospace engineering at the University...

read more

HIP 99770 b: Astrometry Bags a Directly Imaged Planet

It took a combination of astrometry and direct imaging to nail down exoplanet HIP 99770 b in Cygnus, and that’s a tale that transcends the addition of a new gas giant to our planetary catalogs. Astrometry measures the exact position and motion of stars on the sky, so that we are able to see the influence of an as yet unseen planet. In this work, astrometrical data from both the ESA Gaia mission and the earlier Hipparcos mission flag a world that is directly imaged by the Subaru Telescope extreme adaptive optics system, which enabled its near-infrared CHARIS spectrograph to see the target. Supporting work at the Keck Observatory using its Near-Infrared Camera and Keck II adaptive optics system allowed in combination with the CHARIS spectrum the discovery of the presence of water and carbon monoxide in the atmosphere, while the temperature was shown to be about ten times hotter than that of Jupiter. The joint measurements revealed a planet some 14-16 times the mass of Jupiter, in a...

read more

A New Explanation for ‘Oumuamua’s Acceleration

Here’s a thought that puts a different spin on exoplanet studies. The speaker is Darryl Seligman (Cornell University): "The comets and asteroids in the solar system have arguably taught us more about planet formation than what we've learned from the actual planets in the solar system. I think that the interstellar comets could arguably tell us more about extrasolar planets than the extrasolar planets we are trying to get measurements of today." Seligman’s comment plays into the growing interest in interstellar objects that drift into our Solar System like 1/I ‘Oumuamua and 2/I Borisov. These may be the initial members of what is actually a large class of debris from other stars that we are only now learning how to detect. Among the many things we have yet to refine in our understanding of ‘Oumuamua is its actual size. Projections of 115 by 111 by 19 meters are deduced from its brightness and the changes produced by its apparently tumbling motion. The interstellar interloper is too...

read more

Alpha Centauri: TOLIMAN Moves Forward

The problem with Alpha Centauri is that the system is too close. I don’t refer to its 4.3 light year distance from Sol, which makes these stars targets for future interstellar probes, but rather the distance of the two primary stars, Centauri A and B, from each other. The G-class Centauri A and K-class Centauri B orbit a common barycenter that takes them from a maximum of 35.6 AU to 11.2 AU during the roughly 80 year orbital period. That puts their average distance from each other at 23 AU. So the average orbital distance here is a bit further than Uranus’ orbit of the Sun, while the closest approach takes the two stars almost as close as the Sun and Saturn. Habitable zone orbits are possible around both stars, making for interesting scenarios indeed, but finding out just how the system is populated with planets is not easy. We’ve learned a great deal about Proxima Centauri’s planets, but teasing out a planetary signature from our data on Centauri A and B has been frustrating despite...

read more

Tracing Water through the Stages of Planet Formation

The presence of water in the circumstellar disk of V883 Orionis, a protostar in Orion some 1300 light years out, is not in itself surprising. Water in interstellar space is known to form as ice on dust grains in molecular clouds, and clouds of this nature collapse to form young stars. We would expect that water would be found in the emerging circumstellar disk. What new work with data from the Atacama Large Millimeter/submillimeter Array (ALMA) shows is that such water remains unchanged as young star systems evolve, a chain of growth from protostar to protoplanetary disk and eventually planets and water-carrying comets. John Tobin, an astronomer at the National Science Foundation’s National Radio Astronomy Observatory (NRAO), is lead author on the paper on this work: “We can think of the path of water through the Universe as a trail. We know what the endpoints look like, which are water on planets and in comets, but we wanted to trace that trail back to the origins of water. Before...

read more

How a Super-Earth Would Change the Solar System

If there is a Planet Nine out there, I assume we’ll find it soon. That would be a welcome development, in that it would imply the Solar System isn’t quite as odd as it sometimes seems to be. We see super-Earths – and current thinking seems to be that this is what Planet Nine must be – in other stellar systems, in great numbers in fact. So it would stand to reason that early in its evolution our system produced a super-Earth, one that was presumably nudged into a distant, eccentric orbit by gravitational interactions. The gap in size between Earth and the next planet up in scale is wide. Neptune is 17 times more massive than our planet, and four times its radius. Gas giant migration surely played a role in the outcome, and when considering stellar system architectures, it’s noteworthy as well that all that real estate between Mars and Jupiter seems to demand something more than asteroidal debris. To make sense of such issues, Stephen Kane (University of California, Riverside) has run...

read more

How Common Are Planets Around Red Dwarf Stars?

We’re beginning to learn how common planets are around stars of various types, but M-dwarfs get special attention given their role in future astrobiological studies. As I’ve just been talking about CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs program, I’ll fold in today’s news about their release of 20,000 observations covering more than 300 stars, for we can mine some data here about planet occurrence rates. 59 new planets turn up in the spectroscopic data gathered at the Calar Alto Observatory in Span, with about 12 thought to be in the habitable zone of their star. I’ll await with interest our friend Andrew LePage’s assessment. His habitable zone examinations serve as a highly useful reality check. I mentioned spectrographic data above. The CARMENES instruments are built for optical as well as near-infrared studies, and have been used to explore nearby red dwarfs and their possible planets since...

read more

Wolf 1069b: Why System Architecture Matters

Let’s look at a second red dwarf planet in this small series on such, this one being Wolf 1069b. I want to mention it partly because of the prior post on K2-415b, where we had the good fortune to be dealing with a transiting world around an M-dwarf that should be useful in future atmospheric characterization efforts. Wolf 1069b, by contrast, was found by radial velocity methods, and I’m less interested in whether or not it’s in a ‘habitable’ orbit than in the system architecture here, which raises questions. This work, recounted in a recent paper in Astronomy & Astrophysics, describes a planet that is not just Earth-sized, as is K2-415b, but roughly equivalent to Earth in mass, making a future search for biosignatures interesting once we have the capability of collecting photons directly from the planet. If the planet has an atmosphere, argue the authors of the paper, its surface temperature could reach 13 degrees Celsius, certainly a comfortable temperature for liquid water. A...

read more

The Relevance of K2-415b

I want to mention the recent confirmation of K2-415b because this world falls into an interesting category: Planets with major implications for studying their atmospheres. Orbiting an M5V M-dwarf every 4.018 days at a distance of 0.027 AU, this is not a planet with any likelihood for life. Far from it, given an equilibrium temperature expected to be in the range of 400 K (the equivalent figure for Earth is 255 K). And although it’s roughly Earth-sized, K2-415b turns out to be at least three times more massive. What this planet has going for it, though, is that it transits a low mass star, and at 70 light years, it’s close. Consider: If we want to take advantage of transmission spectroscopy to study light being filtered through the planetary atmosphere during ingress and egress from the transit, nearby M-dwarf systems make ideal targets. Their habitable zones are close in, so we get frequent transits around small stars. But the number of Earth-sized transiting worlds around nearby...

read more

The Value of LHS 475b

LHS 475b, a planet whose diameter is all but identical to Earth's, makes news not so much because of what it is but because of what it tells us about studying the atmospheres of small rocky worlds. Credit for the confirmation of this planet goes to the NIRSpec (Near-Infrared Spectrograph) instrument aboard the James Webb Space Telescope, and LHS 475b marks the telescope’s first exoplanet catch. Data from the Transiting Exoplanet Survey Satellite (TESS) were sufficient to point scientists toward this system for a closer look. JWST confirmed the planet after only two transits. Based on this detection, the Webb telescope is going to live up to expectations about its capabilities in exoplanet work. NIRSpec is a European Space Agency contribution to the JWST mission, and a major one, as the instrument’s multi-object spectroscopy mode is able to obtain spectra of up to 100 objects simultaneously, a capability that maximizes JWST observing time. No other spectrograph in space can do this,...

read more

WASP-39b: JWST and Exoplanet Atmospheres

Although I often see the exoplanet WASP-39b referred to as a ‘hot Saturn,’ and sometimes a ‘hot Jupiter,’ the terms don’t really compute. This is a world closer to Saturn than Jupiter in mass, but with a radius somewhat larger than that of Jupiter. Hugging its G-class primary in a seven million kilometer orbit, it completes a circuit every four days. The system is about 700 light years from us in Virgo, and to my mind WASP-39b is a salutary reminder that we can carry analogies to the Solar System only so far. Because we have nothing in our system that remotely compares to WASP-39b. Let’s celebrate the fact that in this exoplanet we have the opportunity to study a different kind of planet, and remind ourselves of how many worlds we’re finding that are not represented by our own familiar categories. I imagine one day we'll have more descriptive names for what we now call, by analogy, 'super-Earths' and 'sub-Neptunes' as well. I've seen WASP-39b referred to in the literature as a...

read more

KOBE: The Hunt for Habitable Zone K-dwarf Planets

From the standpoint of producing interesting life, K-dwarf stars look intriguing. Our G-class Sun is warm and cozy, but its lifetime is only about 10 billion years, while K-dwarfs (we can also call them orange dwarfs) can last up to 45 billion years. That's plenty of time for evolution to work its magic, and while G-stars make up only about 6 or 7 percent of the stars in the galaxy, K-dwarfs account for three times that amount. We have about a thousand K-dwarfs within 100 light years of the Solar System. When Edward Guinan (Villanova University) and colleague Scott Engle studied K-dwarfs in a project called "GoldiloKs," they measured the age, rotation rate, and X-ray and far-ultraviolet radiation in a sampling of mostly cool G and K stars (see Orange Dwarfs: 'Goldilocks' Stars for Life?). Their work took in a number of K-stars hosting planets, including the intriguing Kepler-442, which has a rocky planet in the habitable zone. Kepler-442b is where we'd like it to be in terms of...

read more

Simultaneous Growth of Planet & Star?

I’m interested in a new paper on planet formation, not only for its conclusions but its methodology. What Amy Bonsor (University of Cambridge) and colleagues are drawing from their data is how quickly planets can form. We’ve looked numerous times in these pages at core accretion models that explain the emergence of rocky worlds and gravitational instability models that may offer a way of producing a gas giant. But how long after the formation of the circumstellar disk do these classes of planets actually appear? A planet like the Earth poses fewer challenges than a Jupiter or Saturn. Small particles run into each other within the gas and dust disk surrounding the young star, assembling planets and other debris through a process of clumping that eventually forms planetesimals that themselves interact and collide. Thus core accretion: The planet ‘grows’ in ways that are readily modeled and can be observed in disks around other stars. But the gas giants still pose problems. Core...

read more

Super Earths/Hycean Worlds

Dave Moore is a Centauri Dreams regular who has long pursued an interest in the observation and exploration of deep space. He was born and raised in New Zealand, spent time in Australia, and now runs a small business in Klamath Falls, Oregon. He counts Arthur C. Clarke as a childhood hero, and science fiction as an impetus for his acquiring a degree in biology and chemistry. Dave has kept up an active interest in SETI (see If Loud Aliens Explain Human Earliness, Quiet Aliens Are Also Rare) as well as the exoplanet hunt, and today examines an unusual class of planets that is just now emerging as an active field of study. by Dave Moore Let me draw your attention to a paper with interesting implications for exoplanet habitability. The paper is “Potential long-term habitable conditions on planets with primordial H–He atmospheres,” by Marit Mol Lous, Ravit Helled and Christoph Mordasini. Published in Nature Astronomy, this paper is a follow-on to Madhusudhan et al’s paper on Hycean...

read more

Biosignatures: The Case for Nitrous Oxide

Are we overlooking a potential biosignature? A new study makes the case that nitrous oxide could be a valuable indicator of life on other worlds, and one that can be detected with current and future instrumentation. In today’s essay, Don Wilkins takes a close look at the paper. A retired aerospace engineer with thirty-five years experience in designing, developing, testing, manufacturing and deploying avionics, Don tells me he has been an avid supporter of space flight and exploration all the way back to the days of Project Mercury. Based in St. Louis, where he is an adjunct instructor of electronics at Washington University, Don holds twelve patents and is involved with the university’s efforts at increasing participation in science, technology, engineering, and math. by Don Wilkins Biosignatures, specific signals produced by life, are the focus of intense study within the astronomical community. Gases such as nitrogen (N2), oxygen and methane are sought in planetary atmospheres as...

read more

M-Dwarfs: The Asteroid Problem

I hadn’t intended to return to habitability around red dwarf stars quite this soon, but on Saturday I read a new paper from Anna Childs (Northwestern University) and Mario Livio (STScI), the gist of which is that a potential challenge to life on such worlds is the lack of stable asteroid belts. This would affect the ability to deliver asteroids to a planetary surface in the late stages of planet formation. I’m interested in this because it points to different planetary system architectures around M-dwarfs than we’re likely to find around other classes of star. What do observations show so far? You’ll recall that last week we looked at M-dwarf planet habitability in the context of water delivery, again involving the question of early impacts. In that paper, Tadahiro Kimura and Masahiro Ikoma found a separate mechanism to produce the needed water enrichment, while Childs and Livio, working with Rebecca Martin (UNLV) ponder a different question. Their concern is that red dwarf planets...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives