SETI: The Pollution Factor

We tend to assume that our mistakes as a species flag us as immature, a young civilization blundering about with tools it is misusing on a course that may lead to extinction. But assume for a moment that an intelligent extraterrestrial civilization goes through phases more or less like our own. If we’re sifting through radio signals and looking for optical flashes to find them, shouldn’t we consider other ways such a civilization announces itself? What if we’re not the only polluters in the universe, for example, and other cultures are making the same mistakes?

In a 2010 paper, Jean Schneider (Observatoire de Paris-Meudon) and colleagues noted the possibility of using pollutants as a way of moving beyond biosignatures to find ETI. Let me quote from the paper:

…another type of far from equilibrium signals can be seen as techno-signatures, i.e., spectral features not explained by complex organic chemistry, like laser emissions. In the present state of our knowledge one cannot eliminate them a priori, although we have no guiding lines to search for them. For instance, in the present Earth atmosphere, CFC (Carbon Fluoro Compounds) gases are the result of technological chemical synthesis. Observed over interstellar distances, they would reveal to the observer the presence of a technology on our planet.

Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics) and James Kasting (Pennsylvania State) have been looking at the CFC idea for some time. As Kasting told New Scientist in 2009, “There’s a whole host of things we make industrially as solvents, cleaners and refrigerants – they certainly have absorption lines. If you had a big enough telescope, you could detect them.” CFCs themselves absorb infrared light at specific wavelengths and are detectable at very low concentrations, as low as a few parts in a trillion. Moreover, they do not form naturally, and though a detection would be tricky, Kaltenegger has suggested a future array of space telescopes working at infrared wavelengths should be able to do the job. For more on this, see To Spot an Alien, Follow the Pollution Trail, the original article in New Scientist.

2014-21

Image credit: CfA.

But would it take such a futuristic flotilla of telescopes to spot pollution? New work out of the Harvard-Smithsonian Center for Astrophysics suggests even the James Webb Space Telescope may be up to the challenge. The paper argues that atmospheric levels of CFCs about ten times greater than we have produced here on Earth could be traced by JWST. The focus here is on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), described as the easiest CFCs to detect. Henry Lin and team point out that the lifetimes of CFCs range from 10 to 105 years, meaning that a polluting civilization existing any time in the past 105 years would be theoretically detectable.

But the strategy only works in detecting pollutants on Earth-like planets circling a white dwarf star, a scenario that maximizes the atmospheric signal. Recent work has shown that white dwarfs can have long-lived habitable zones, and the similarity in size between the planet and star offers the best contrast between the planet’s atmospheric transmission spectrum and the star it is transiting. The paper considers white dwarfs that have cooled to surface temperatures around 6000 K, the same surface temperature as the Sun, so that the habitable zone is close in, at about 0.01 AU, which greatly increases the chance of a transit.

From the paper:

…a recent study by Worton et al. (2007) estimates the atmospheric concentration of CF4 at ~75 parts per trillion (ppt), whereas CF4 levels were at ~40 ppt around ~1950. Assuming a constant production rate…we expect as a very crude estimate that in roughly ~1000 years, the concentration of CF4 will reach 10 times its present levels. Coupled with the fact that the half-life of CF4 in the atmosphere is ~50,000 years, it is not inconceivable that an alien civilization which industrialized many millennia ago might have detectable levels of CF4. A more optimistic possibility is that the alien civilization is deliberately emitting molecules with high GWP [global warming potential] to terraform a planet on the outer edge of the habitable zone, or to keep their planet warm as the white dwarf slowly cools.

The JWST should be able to detect CF4 and CCl3F signatures in the atmospheres of transiting Earths around white dwarfs as long as their concentrations are on the order of ten times that of the Earth — CF4 detection demands 1.7 days of exposure time on the instrument and CCl3F 1.2 days. The exposure time is already built into biosignature study times, given that these will take on the order of an entire day to detect. Looking for pollutants, then, adds little in terms of additional observing costs.

Bear in mind that while some CFCs last for tens of thousands of years in the atmosphere, others persist no more than ten. Harvard’s Avi Loeb, one of the trio of researchers in this project, points out that finding a short-lived CFC on an exoplanet would signal an active civilization. The other scenario may be starker. If we detect molecules from long-lived CFCs but none of the short-lived variety, we could be witnessing a changing civilization. “In that case,” says Loeb, “we could speculate that the aliens wised up and cleaned up their act. Or in a darker scenario, it would serve as a warning sign of the dangers of not being good stewards of our own planet.”

The paper is Lin et al., “Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets,” accepted by The Astrophysical Journal and available as a preprint. The Jean Schneider paper is “The Far Future of Exoplanet Direct Characterization,” Astrobiology 10 (2010), p. 121.

tzf_img_post

Transiting World at the Snow Line

It’s 9000 times easier to find a ‘hot Neptune’ than a Neptune out around the ‘snow line,’ that region marking the distance at which conditions are cold enough for ice grains to form in a solar system. Thus says David Kipping (Harvard-Smithsonian Center for Astrophysics), who is lead author on the paper announcing the discovery of Kepler-421b, an interesting world about which Kipping has been sending out provocative tweets this past week. Kepler-421b draws the eye because its year is 704 days, making it the longest orbital period transiting planet yet found. The intriguing new world is located about 1000 light years from Earth in the direction of the constellation Lyra.

The transit method works by detecting the characteristic drop in brightness as a planet moves across the face of the star as seen from Earth. What’s unusual here is that Kepler-421b moved across its star only twice in the four years that the Kepler space telescope monitored it. As Kipping explains on this CfA web page, the further a planet is from its host star, the lower the probability that it will pass in front of the star as seen from Earth. Kepler-421b should have had, by Kipping’s calculations, a tiny 0.3% chance of being observed in a transit. We can be happy for the discovery while also considering how tricky it will be to find worlds like it by transit methods.

kepler-421b

Image: Transit light curve of Kepler-421b. Blue and red points denote the two different transit epochs observed, offset in time by 704 days. Credit: David Kipping et al.

Also known as the ‘frost line,’ the snow line in our own Solar System is the divider between the rocky inner planets all the way out to Mars, and the outer gas giants. The kind of planet you get depends in part on whether, during the early period of planet formation, the emerging planet is inside or outside the snow line. According to our current formation models, gas giants form beyond the snow line, where the temperatures are low enough that water condenses into ice grains. The planetary embryos that become the gas giants should have abundant ice grains sticking together to create worlds rich in ice and water compared to the inner system.

That has major implications, of course, because we have discovered a large number of ‘hot Jupiters’ and Neptune analogues that orbit far inside the snow line in their respective systems. That makes for migration scenarios where gas giants forming in the outer system move inward as the result of likely gravitational encounters with other worlds. Kepler-421b, however, orbits its K-class primary at a distance of about 177 million kilometers, a gas giant that may never have migrated, and the first example of such ever found using the transit method.

The snow line moves inward over time as the young planetary system evolves, and Kipping and team’s calculations show that when this system was about three million years old, early in the era of planet formation, its snow line should have been at about the same distance as Kepler-421b’s present location. The planet is roughly the size of Uranus, about four times the size of Earth, which may be an indication that it formed late in the planet formation era, at a time when not enough material was left in the system to allow it to become as large as Jupiter.

But is Kepler-421b truly an ice giant or could it actually be a large, rocky world? The evidence strongly favors the former. From the paper (internal citations deleted for brevity):

Although calculating detailed formation scenarios for Kepler-421b is outside the scope of this work, simple arguments suggest Kepler-421b is an icy planet which formed at or beyond the snow line. With a radius of roughly 4 R? and a mass density of at least 5 g cm-3, a rocky Kepler-421b has a mass of at least 60 M?. Growing such a massive planet requires a massive protostellar disk with most of the solid material at 1-2 AU. Among protoplanetary disks in nearby star-forming regions, such massive disks are rare. Thus, a rocky Kepler-421b seems unlikely.

And as to the place of formation:

For Kepler-421b, in situ formation is a reasonable alternative to formation and migration from larger semi-major axes. Scaling results from published calculations, the time scale to produce a 10-20 M? planet is comparable to or larger than the median lifetime of the protoplanetary disk. Thus formation from icy planetesimals is very likely. If significant migration through the gas and leftover planetesimals can be avoided, Kepler-421b remains close to the ‘feeding zone’ in which it formed.

To place the planet in context, consider that Mars orbits the Sun every 780 days, as compared to Kepler-421b’s 704 day orbit (around, as mentioned above, a K-class star that would be cooler and dimmer than the Sun). The researchers’ calculations indicate a temperature of about -135 Fahrenheit (180 K). At least one recent paper, cited by Kipping and colleagues, suggests that planets near the threshold of the snow line may be common, but finding them by transit methods will be difficult because of the low transit probability. As for radial velocity detection, the planet poses what the paper calls “a significant challenge to current observational facilities,” but determining the mass of worlds like this could help us understand the relationship between mass and radius as we move further from the parent star.

The paper is Kipping et al., “Discovery of a Transiting Planet Near the Snow-Line,” accepted by The Astrophysical Journal and available as a preprint online.

tzf_img_post

A Spacecraft in Your Pocket

Last week we looked at Mason Peck’s ideas on ‘Sprites,’ tiny spacecraft the size of computer chips that could be sent in swarms to targets near and far. I was particularly interested in Peck’s idea of using Jupiter as a massive particle accelerator, bringing huge numbers of Sprites up to speeds in the range of hundreds of kilometers per second. Growing out of Clifford Singer’s insights in the 1970s and given onboard intelligence by Gerald Nordley, the idea of ‘smart pellets’ thus moves beyond a propulsion method to become a fleet of networked space probes.

Perhaps one day we’ll be able to use the tools of nanotechnology to create highly intelligent vehicles of extremely small size, rendering the propulsion problem a bit more tractable. But until we’re at that level, it’s fascinating to see the groundwork being laid in work like Peck’s. Today I want to talk about another experiment with space vehicles that are smaller than a compact disc and as thin as a piece of paper. Pocket Spacecraft are being developed for launch in a CubeSat for a range of potential missions in an energetic attempt at space crowdsourcing.

We’ve already seen crowdsourcing at work in projects like KickSat, which is still in the works in the capable hands of Zachary Manchester at Cornell despite an initial setback last April. KickSat would have deployed a large number of Sprites for early testing, as will, presumably, the follow-up KickSat-2. Some members of the KickSat team have also gone on to work on Pocket Spacecraft, a project that has tapped the skills of volunteers from over twenty countries, and one that has played a major role in conferences like the Interplanetary CubeSat Workshop (MIT) and a Caltech event called Small Satellites: A Revolution in Space Science.

So what are Pocket Spacecraft? The image below gives you the gist of a spacecraft small enough to fit in your pocket, essentially a disk made out of the same material you find in flexible circuit boards. The polyimide disk is ringed by a nickel titanium hoop that contains memory and doubles as an antenna for the diminutive vehicle. Let me quote from the Pocket Spacecraft site to continue the description:

Solar cells, a thinned commercial off the shelf system-on-a-chip die (ground down with diamond sand paper) and support components, sensors and instruments are bonded or printed on the polyimide and protected with a conformal coating resulting in a spacecraft with an average thickness less than one twentieth of a millimetre (two thousandths of an inch), and a mass much less than a gram (a thirtieth of an ounce).

Pocket_Spacecraft_1

Image: Thin-Film Scout prototype consisting of a polyimide substrate, bonded solar cells and thinned die, printed passive components, antennas and images. Credit: Pocket Spacecraft.

The upshot is that Pocket Spacecraft can be packed tightly, thousands to a single CubeSat ‘mothership.’ We’ve seen that CubeSats are destined to be true workhorses for inexpensive space missions, a fact underlined by recent NASA studies on CubeSats in interplanetary space. In February of 2013, NASA selected 24 small satellites to fly as auxiliary payloads on rockets planned for launch in the next two years, the CubeSats being proposed coming not only from NASA centers (three from JPL) but educational institutions and non-profit organizations.

We’ve also seen that The Planetary Society has been engaged in a lengthy study of solar sails, with plans for its LightSail-1 to be deployed from a CubeSat. Potentially, the tools are all here to allow us to fly CubeSats with different instrument configurations to a wide range of targets in the Solar System using solar sails for propulsion. The Pocket Spacecraft team also speaks about another option, a system based on electrolysis, using solar power to break down liquid fuel. Its CubeSats are radiation hardened and contain the subsystems needed to communicate with Earth as well as to release and photograph the numerous CD-sized Pocket Spacecraft.

Pocket_Spacecraft_3

Image: An engineering model of a 3U CubeSat, the largest most commonly launched CubeSat format. Credit: Pocket Spacecraft.

Call them ‘Scouts,’ as the Pocket Spacecraft team does. The Scouts house integrated optical and radio transceivers and sensors including an accelerometer, gyroscope, temperature sensor, and single pixel optical sensor. Using online tools including smartphone apps, contributors to the project can take a role in personalizing an individual Scout and, using a Web browser, can participate in science experiments. The more technically inclined can use Arduino tools to run their own software on Scouts, backed by a Web-based integrated development environment.

So the crowdsourced side of this project is engaging because it’s not just a matter of contributing money, but of participating in an active way with a space mission. Some Scouts are to be released from Earth orbit to test their ability to re-enter the atmosphere, taken measurements of the Earth’s thermosphere along the way. Others will be flown on a low energy transfer orbit to the Moon for release and landing on the surface. The attempt is to show that a collaboration of private citizens operating on a shoestring budget can design and build spacecraft that can travel not just into orbit but to the Moon and theoretically further given the new generation of sail-enabled CubeSats now beginning to come online.

The issue I’d be most concerned with in this scenario is communications. Telemetry is to be transmitted either directly from the Scout spacecraft to Earth or through the CubeSat mothership, depending on the distance of the Scout. Pocket Spacecraft says it will take care of the communications infrastructure, which could involve amateur radio equipment at one end and, as Scouts get closer to the Moon, repurposed radio telescopes. Assuming this works, the telemetry is to be made available through a smartphone app as well as public servers.

Pocket_Spacecraft_4

Image: Lapping (thinning) a pocket spacecraft chip die using diamond ‘sandpaper’ (left) and testing the final part (right). Credit: Pocket Spacecraft.

The theme of miniaturization is the obvious driver for this entire project. From the site:

Even though our spacecraft are small, they are mighty. If you look beneath the superficial cosmetic customization of the surface of the spacecraft, you will find computing power comparable to that of the Voyager spacecraft and Apollo flight computers. Thanks to the spectacular advances in semiconductor technology and the widespread low cost availability of what once would have been considered high precision scientific instruments that are now commonly found in cell phones such as accelerometers and magnetometers, we are building tiny high performance inexpensive scientific spacecraft accessible to all.

I’m glad to see that the Pocket Spacecraft team has software development options for Scouts that allow schools or clubs to support up to 50 users for customizing onboard systems. A software Scout simulator and virtual Solar System are being established to test out customization ideas along with swarm communications possibilities. So the intent is to let users be ‘hands-on’ throughout the process from Scout building and lab testing to space operations.

We’ve talked about a future where long-haul ‘swarm’ spacecraft are a possibility, but one that demands huge advances in nanotechnology, artificial intelligence, networking and communications. We get to a future like that by making experiments one step at a time to discover the issues that need to be addressed. We move incrementally forward. Pocket Spacecraft, using off-the-shelf equipment and private money, should engage the interest of the public and, if successful, provide useful data applicable to future feats of miniaturization. Click here for further information.

tzf_img_post

First Words: Remembering July 20, 1969

I had hoped that the anniversary of the Apollo 11 landing would stir up some memories for Centauri Dreams regular Al Jackson, and I was not to be disappointed. Here, spurred partly by weekend news reports questioning who said the first words from the Moon, Al thinks back to a time of Champagne and jubilation, and gives us an inside look at those famous first words. He was also kind enough to pass along some of his own photos. A widely known figure in the interstellar community, Al was astronaut trainer on the Lunar Module Simulator and worked closely with, among many others, Neil Armstrong and Buzz Aldrin. He is also a man who never forgets a single thing he has ever read, as I learn every time I talk to him about science fiction, which I hope to do again this fall in Houston.

by A. A. Jackson

al_2000

The 45th anniversary of the Apollo 11 landing was on a Sunday, just as it was on July 20 1969. My wife (of one year) and I lived in the Dijon Apartments in Clear Lake City, Houston. So for most employees this was not a work day at the Manned Spacecraft Center…of course quite a few people were in Building 30, not only Mission Control but also in the back-up rooms that surrounded it. Every flight controller was in contact with at least two specialists who were sitting at consoles across the hall, for instance MIT people who created the software for the CM and LM primary guidance and control system (the GN&C computer, as known then, and the PNGS, pronounced ‘pings’).

cbsandme

Image: A Polaroid shot CBS took of Al Jackson in the 1960s, during filming for Walter Cronkite’s Twentieth Century TV program.

I put a bottle of Champagne in our fridge freezer that morning, took it out around 11 AM and the damn thing had frozen! Good thing it did not explode! Put that in my briefcase, told my wife I was going on-site to listen to the landing. I did that because as an Apollo instructor I knew that the Lunar Module Simulator consoles had the Flight Director’s loop, which was not fed to the TV networks. When I got to building 5, where the simulators were, some of my colleagues said it sure would be good to have a TV, even though there was air to ground video. We knew of only one, it was in Division chief Warren North’s office in Building 5, the next building over from where our offices were. So we went over there — Warren was there, but quickly invited us in.

al_1968

Image: Al Jackson helping to run a 1968 test of the environmental control system on the LM simulator, with the cockpit of the LM behind him.

Turned out, we may have known this, he had the Flight Director’s loop up on a speaker in his office. So we watched the TV and listened to Gene Kranz’s loop. The nice thing about that was Kranz had not only Cap Com but all the flight controller’s loops open and the ‘air to ground,’ so everything. Listened to the landing,* this was about 2:18 CT that Sunday. I told one of my friends I had a bottle of Champagne and was going for some paper cups. Even in those days we were not supposed to have alcohol in an undesignated federal facility, he didn’t know how a division chief might respond! So after about another hour, knowing that the EVA would not be until 9 pm, we all went home. I put the bottle in the fridge. Later my wife and I and several of my MSC friends gathered at the apartment of my closest friend and we drank that Champagne!

Fongandme

Image: Al Jackson and Senator Hiram Fong of Hawaii in 1967, in a photo taken by NASA public affairs.

Just this weekend I noticed a news article stating that the first words from the Moon were not “Houston….” They were not. I told Buzz this on the 25th anniversary and he said “Nobody cares about details like that.” The first words were technical so I don’t think many do.

I looked at several transcripts on the Web and I don’t think they are right, so I listened to the air-to-ground again and here is what I hear (CC is Cap Com, CDR is commander, and LMP is Lunar Module Pilot), from 30 seconds:

    04 06 45 31 CC

    30 seconds.

    04 06 45 32 CDR (EAGLE)

    Forward drift?

    04 06 45 33 LMP (EAGLE)

    Yes.

    04 06 45 34 LMP (EAGLE)

    Okay.

    04 06 45 40 LMP (EAGLE)

    CONTACT LIGHT.

    [04 06 42 CDR (EAGLE)

    [Contact]

    04 06 45 43 LMP (EAGLE)

    Okay. ENGINE STOP.

    04 06 45 45 LMP (EAGLE)

    ACA – out of DETENT.

    04 06 45 46 CDR (EAGLE)

    Out of DETENT.

    04 06 45 47 LMP (EAGLE)

    MODE CONTROL – both AUTO. DESCENT ENGINE COMMAND OVERRIDE – OFF. ENGINE ARM – OFF.

In square brackets I put in that Neil repeats “Contact” which may have been ‘Contact Light” which the VOX cut off (this does not seem to occur in the transcripts I have read). I swear though that it is Buzz who says ENGINE STOP and ACA – out of DETENT (ACA is Attitude Controller Assembly). So really if you don’t count the landing probes touching the Lunar surface the first words from the Moon are from Buzz: “ENGINE STOP” (that does not sound like Neil to me).

training

Image: The first page of an LM simulator training report, one of hundreds Al made out during this period.

* I do remember the 1201 and 1202 Master Alarms on descent. The press about that has always focused on Steve Bales, guidance officer (GUIDO), White Team, but I remember that the core to solving that problem was the back room MIT guys telling Jack Garman, group leader, program support group, Apollo Guidance Software that everything was ok, and Garman was yelling over his headset at Bales about this. Technical details no one cares about.

tzf_img_post

Neil Armstrong: ‘A Little Bit of Bedlam’

As we approach the 45th anniversary of the first landing on the Moon, journalist and author Neil McAleer has been looking back at an interview he conducted with Neil Armstrong on March 16, 1989. The author of Visionary: The Odyssey of Sir Arthur C. Clarke (Clarke Project, 2012), McAleer has lived among and written about the space community for many years. We learn little about Clarke from this interview, but Armstrong’s character comes through — he’s terse, focused, always impatient to get back to work. I suspect Centauri Dreams regular Al Jackson, who worked with Armstrong and Buzz Aldrin in his role as astronaut trainer on the Lunar Module Simulator (see The Magicians of Confidence), will recognize Armstrong’s mode here immediately. His self-imposed distance could never conceal the cool competence he displayed on the most breathtaking descent in history.

An interview conducted by Neil McAleer

mcaleer

I requested this interview with Neil Armstrong 25 years ago, when I was writing and researching the first edition of my Arthur C. Clarke biography. That work was the reason. I wanted to know how they met and what kind of relationship they had during the early years of the Space Age.

The interview’s first question, not on tape, asked Mr. Armstrong if he knew how Arthur C. Clarke’s substantial Epilogue (“Beyond Apollo”) for the book First on the Moon came about.

[Armstrong] “I just don’t have that kind of information.”

This book—subtitled, “A Voyage with Neil Armstrong, Michael Collins, Edwin E. Aldrin, Jr.”–is considered the official eyewitness account of Apollo 11’s journey to the moon’s surface and return to Earth. It was published in 1970, the year after their historic mission.

Neil Armstrong and Arthur C Clarke Meet at Converence on Wallops Island, VA No 3 (1)

[McAleer] “Did you ever actually meet Clarke, by the way?”

[Armstrong] “Yes. We attended a NASA meeting for a couple of days, and I can’t remember where it was. It seems to me it was somewhere in Virginia. [Wallops Island I found out later]. It must have been around 1970.”

[McAleer] “Did it have anything to do with the book, First on the Moon, or the afterword Clarke wrote for it?”

[Armstrong] “No, It had nothing to do with that. NASA gathered together a number of people, primarily NASA senior executives, but there were a number of non-NASA personnel also invited as well. And they were looking at the future. The purpose was to look at what the important forces and functions in the years to come might be. Arthur was an invited attendee, and I had a chance to chat. . . .”

Image: Neil Armstrong and Arthur Clarke met for the first time during a NASA conference held on Wallops Island, VA in June 1970, having shared the bus that took them out to Wallops from NASA headquarters.

A computer alarm, a harsh buzzer, sounds loudly in the background.

“Hold on!” says Armstrong, and attends to the alarm and computer challenge.

I waited about a minute and started to ask another question too soon.

“Hold on a second; I got another problem here . . . a little bit of bedlam.”

That phrase, ” a little bit of bedlam” took me back in time—I was thinking that this was an earthbound analogy to the computer program alarms that set off during the final descent of Apollo 11’s Excursion Module, the Eagle, to the moon’s surface. The first alarm sounded at about 6,000 feet above the lunar surface. And several more sounded as Eagle descended. Soon NASA made the call that the computer overload alarms were related to the rendezvous radar, and not the landing radar.

Then the second real problem: fuel supply getting extremely low and visibility poor because of kicked up dust near the surface. The fuel supply was then 20 seconds as Armstrong hunted for a smooth site without large boulders and Aldrin kept calling out Eagle’s relative position changes.

Commander Neil Armstrong and Pilot Buzz Aldrin used those seconds well and set the Eagle down–safely, without any dents, as history turned out–on the Sea of Tranquility.

A minute or two later, Armstrong was back at the phone. I gave up my flashback memories and returned to the interview—shifting from the 1970 conference to his years at Purdue University.

[McAleer] “You were in your early 20s, at Purdue, probably bogged down in engineering texts. Had you read any of Arthur’s books early on? In ’52 Clarke’s Exploration of Space was published, for example, which explored the future of space travel.”

[Armstrong] “I can’t recall. I might have started reading . . . I don’t remember things that he wrote, and that I might have read, or any impact they may have had [early in his college years]. I read many of his books subsequently, but I don’t know if they were important to me in those years.

Armstrong in simulator_2

Image: NASA Tests pilots Neil Armstrong and James W. Wood (seated) working inside the simulator for the experimental Dyna-Soar spaceplane program, 1960, Edwards Air Force Base.

[McAleer] “You read the novel 2001? Before Apollo 11?”

[Armstrong] “I saw the movie. I don’t know if I read the book at that point. There were a lot of books at some point in time but I don’t know when I might have read them.”

I then told Armstrong I was looking for early influences, like Joe Allen, the astronaut, being influenced by early Clarke books. Like Carl Sagan. I refer back to his conversation with Clarke, and I say, “at the luncheon” (intending to add “of the conference,” but did not) an assumption on my part. He corrects me immediately.

[Armstrong] “Not a luncheon. It was a couple-of-day meeting, and people were giving papers and so on, and I had a chance to chat with him some at that time. And I may have met, bumped into him at other times as well; I . . . I just don’t recall.”

[McAleer] “So you don’t recall any specific conversation, even about any of the papers delivered?”

[Armstrong] “No I don’t.”

I decided—time to move on. Armstrong had a meaningful, adventurous, chock-full life, with countless specific details. Why should he be able to remember the kind of detail I was after? So I transitioned from past to present.

[McAleer] What do you think about Mike Collins’ new book, Lift Off?

[Armstrong] “It’s a good book. It’s typical Mike.” [he says, and follows with a little laugh]

[McAleer] “When is Armstrong going to tell his story? Ever?”

[Armstrong] “Well, I think the story is well documented. Since we were completely open with everything we saw, felt, heard, and ah . . . experienced at the time, there is little that can be added in retrospect that would add significantly to the history.”

[McAleer] “Even your early years? Anything out about your youth, getting a flying license, your early flying experiences?”

[Armstrong] “Ah . . . I don’t know what that has to do with Arthur Clarke.”

Armstrong’s consistency and focus wouldn’t let an interviewer–including me!–get off subject! His skepticism about some journalists, based on some bad experiences with aggressive, less-principled, and “getting it wrong” reporters, was well known.

Armstrong in LEM Simuatior 3368641-239x300

I just fell back on the truth for a defense.

[McAleer] “It doesn’t,” I confessed. “I’m making a quick transition here. I just hope someday there will be a Neil Armstrong story.”

[Armstrong] “Well, perhaps there will be something sometime.”

[McAleer] “But you don’t have any plans to move ahead with it?”

[Armstrong] “I do not.”

[McAleer] “Will you be participating in the 20th anniversary of Apollo 11 in any way?”

[Armstrong] “NASA has a number of activities scheduled that I’ll participate in.”

Image: Less than 10 years after working in the Dyna-Soar simulator, Neil Armstrong was training in the Apollo program’s Lunar Excursion Module simulator in Houston—with all the “bells and whistles.”

He paused for a second or two and then went back to the beginning of our interview. “You asked about his foreword? [for First on the Moon]

[McAleer] “Afterword,” I corrected (actually an Epilogue).

[Armstrong] “Yes, as far as I know that was not organized by the crew. That was done by Little Brown. I don’t think the crew had any discussions with Mr. Clarke about that. The crew had no participation in that.”

We had gone full circle. Armstrong had finally answered my first question precisely. Perhaps this was when the curtain comes down-—at full cycle. Yet I still wanted a few more minutes of his time. When you have the first man who stepped on the surface of the moon on the phone, you just don’t want to hang up too quickly.

I then talked to Armstrong about the idea of a 25th anniversary Apollo 11 book, and connected to that, my forthcoming meeting and interview with Ian Ballantine and his wife Betty, pioneers in paperback book publishing in the United States after WWII. Witness the year 1953: The Ballantines published many books, but among them were the first editions of Arthur C. Clarke’s Childhood’s End and Ray Bradbury’s Fahrenheit 451. That was a good year, 1953, for science fiction.

[Armstrong] “It’s not something that jumps out at me, but I remain open . . . . ”

[McAleer] So everything’s going well?”

[Armstrong] “No complaints.”

[McAleer] “Good. So any idea about when you’re going to retire?”

[Armstrong laughs] “I don’t have any idea.”

[McAleer] “The conference in 1970-—Were Mike and Buzz there?”

[Armstrong] “It didn’t have anything to do with Apollo 11. It was during the time that I was a NASA bureaucrat. I was there as part of my responsibility at NASA in Washington. I was there in an official capacity.”

[McAleer] Did you deliver a paper or anything?”

[Armstrong] “I don’t remember that I did. I just don’t recall. Clarke was the only person from what you might call the . . . [he hesitates] ‘writer’s world’. I attended a lot of these kinds of meetings. What should be going on in the future of NASA? In regards to the program planning? There were astronomers, biologists, program managers there. My responsibility was not space but aeronautics. Arthur was on the space side; that’s why he was invited.”

It was closing time; past it actually. I knew for sure.

Al_at_console_2

Image: Bird’s-eye view of the support components and scientists running the Apollo LEM simulator in Houston to train Apollo crew members. That’s Centauri Dreams contributor Al Jackson facing the camera at the main console.

[McAleer] “Mr. Armstrong, I’m sorry my ‘short phone call’ took a little longer than I thought.”

[Armstrong] “Well, that’s all right. I’m sorry there wasn’t anything that would be much help to you, as I said at the beginning.”

I couldn’t remember him saying that–probably because I didn’t want to hear it.

Finally I thanked him for his perspective and help, and we said goodbye.

Some interviews can often turn out to be important in an entirely different way than intended. I learned that he was still dealing with program alarms and computers in his work some 20 years after the Apollo 11 mission to the moon and back. I consider that fact amazing.

Armstrong was chairman of Computing Technologies for Aviation (CTA, Inc.) for most of the 1980s, including 1989, the year of this interview. The company was based in Charlottesville, Virginia, and it provided software for flight scheduling and support activities. This software was important to corporate jet operators to maximize the efficient use of their aircraft. And even before the Apollo 11 mission, in Armstrong’s early years of running and designing flight simulations—he had plenty of alarms as a test pilot. So computer program alarms were common events throughout much of his career—including March 16, 1989.

Actually, as my research on Clarke went forth, I did learn an important aspect of the relationship between Clarke and Armstrong. I learned that most of their primary contacts were through occasional written correspondence over the years or news from third parties. Their face-to-face meetings were very rare—possibly only that one time on Wallops Island, Virginia in 1970.

In one of the many appearances and interviews Armstrong did with Collins and Aldrin a few months later for the 20th anniversary of Apollo 11, he said this:

“We are amazed by, enthralled by, then bored by, and eventually forget some new things usually within one revolution of the Earth around the sun. That’s the way humans are. And so it’s a great surprise to me that so many people remember something that happened 20 years ago!”

Today we remember the first landing on the moon–45 years ago now. The countdown to the 50th Golden Anniversary is just 5 years away–2019.

But on March 16, 1989–25 years ago–I was fortunate and happy to speak with Neil Armstrong on that antique device, the corded telephone, about Arthur C. Clarke–and Neil Armstrong.

neil-armstrong-nasa-50th-anniversary 2008

tzf_img_post