Centauri Dreams

Imagining and Planning Interstellar Exploration

Red Dwarf Planets and Habitability

The question of habitability on planets around M-dwarfs is compelling, and has been a preoccupation of mine ever since I began working on Centauri Dreams. After all, these dim red stars make up perhaps 75 percent of the stars in the galaxy (percentages vary, but the preponderance of M-dwarfs is clear). The problems of tidal lock, keeping one side of a planet always facing its star, and the potentially extreme radiation environment around young, flaring M-dwarfs have fueled an active debate about whether life could ever emerge here.

At Northwestern University, a team led by Howard Chen, in collaboration with researchers at the University of Colorado Boulder, NASA’s Virtual Planet Laboratory and the Massachusetts Institute of Technology, is tackling the problem by combining 3D climate modeling with atmospheric chemistry. The paper on this work, in press at the Astrophysical Journal, examines how general circulation models (GCM) have been able to simulate the large-scale circulation and climate system feedbacks on planets around red dwarfs, but these models have not accounted for atmospheric chemistry-driven interactions that the authors believe are critical for habitability. Thus so-called coupled chemistry-climate models (CCM) are needed to factor in how an atmosphere responds to the star’s radiation.

The study takes both ultraviolet radiation (UV) from the star and the rotation of the planet into consideration, noting how UV affects gases like water vapor and ozone. Says Chen:

“3D photochemistry plays a huge role because it provides heating or cooling, which can affect the thermodynamics and perhaps the atmospheric composition of a planetary system. These kinds of models have not really been used at all in the exoplanet literature studying rocky planets because they are so computationally expensive. Other photochemical models studying much larger planets, such as gas giants and hot Jupiters, already show that one cannot neglect chemistry when investigating climate.”

Image: An artist’s conception shows a hypothetical planet with two moons orbiting within the habitable zone of a red dwarf star. Credit: NASA/Harvard-Smithsonian Center for Astrophysics/D. Aguilar.

The researchers simulate the atmospheres of synchronously-rotating planets (i.e., with one side always facing the star) at the inner edge of the habitable zones of both K- and M-class stars. using numerical simulations of climate coupled with photochemistry and atmospheric chemistry through their 3D CCM. They find that the thin ozone layers produced on planets around active stars can render an otherwise habitable planet (in terms of surface temperatures) hazardous for complex life, as there is insufficient ozone to block UV radiation from reaching the surface.

Active photochemistry is a crucial issue, for according to Chen and team, planets can also lose significant amounts of water due to vaporization. Added to the ozone issue, we find boundaries beyond which a planet habitable in terms of liquid water on the surface is rendered lifeless. Understanding stellar activity becomes a predictive tool for gauging which M-dwarfs are most likely to merit precious telescope time for future missions looking for biosignatures. More active M-dwarfs appear far less likely to host life-bearing planets. From the paper:

…we find that only climates around active M-dwarfs enter the classical moist greenhouse regime, wherein hydrogen mixing ratios are sufficiently high such that water loss could evaporate the surface ocean within 5 Gyrs. For those around quiescent M-dwarfs, hydrogen mixing ratios do not exceed that of water vapor. As a consequence, we find that planets orbiting quiescent stars have much longer ocean survival timescales than those around active M-dwarfs. Thus, our results suggest that improved constraints on the UV activity of low-mass stars will be critical in understanding the long-term habitability of future discovered exoplanets (e.g., in the TESS sample…)

The effects of stellar UV radiation become a useful predictive tool as we narrow the target list. Vertical and horizontal winds in the upper atmosphere are strengthened as UV flux goes up. Moreover, the global distribution of ozone and hydrogen depends upon all these processes, which can affect the contrast between the dayside and nightside conditions under varying UV flux. The authors believe that only by bringing atmospheric chemistry into the picture of 3D modeling can we gauge whether a planet can attain true habitability and maintain it. Usefully, using their results, they show that both water vapor and ozone features could be detectable by instruments aboard the James Webb Space Telescope if we choose our targets carefully.

The paper is Chen et al., “Habitability and Spectroscopic Observability of Warm M-dwarf Exoplanets Evaluated with a 3D Chemistry-Climate Model,” in press at the Astrophysical JournaL (preprint).

tzf_img_post

ARIEL Emerging

It’s good to see the European Space Agency’s ARIEL mission getting a bit more attention in the media. The Atmospheric Remote-sensing Infrared Exoplanet Large-survey was selected earlier this year as an ESA science mission, scheduled for launch in 2028. Here the goal is to cull a statistically large sample of exoplanets to examine their evolution in the context of their parent stars. Giovanna Tinetti (University College London) is principal investigator.

I would urge seeing ARIEL in the context of a different kind of evolution, that being the gradual growth in our technologies as we continue getting closer to studying the atmospheres of terrestrial-class worlds. For while ARIEL cannot achieve this feat — its focus is on exoplanets of Jupiter-mass down to super-Earths, all on close orbits, with temperatures greater than 320 Celsius — it leverages the fact that high temperature atmospheres keep their various interesting molecules in continual circulation, rather than letting them sink into obscuring layers of cloud. They are thus more easily detected and provide fodder for future work.

Image: Giovanna Tinetti (UCL), principal investigator for ARIEL.

The goal is to study hundreds of transiting exoplanets, looking at the spectra of their atmospheres as they pass in front of their host stars, allowing starlight to filter through the gaseous envelope for analysis. The light emitted by these atmospheres will also be analyzed just before and after the planets pass behind their primaries. Such transmission spectroscopy allows scientists to unlock the composition, temperature and chemical processes at work. No other spacecraft has been so tightly devoted to atmospheric analysis as ARIEL, and here we will be working with a large sample population in search of commonalities and differences. We go from just a few characterized atmospheres to hundreds.

I see that NASA is contributing fine guidance sensors in two photometric bands in an instrument called CASE — Contribution to ARIEL Spectroscopy of Exoplanets — which will observe clouds and hazes at near-infrared as well as visible wavelengths, complementing ARIEL’s other instrument, an infrared spectrometer that operates at longer wavelengths. It will be CASE that measures planetary albedo while examining how clouds influence the composition and other properties of the atmospheres under study. ARIEL should provide abundant insights into how future telescopes can home in on worlds much more like our own.

Image: This artist’s concept shows the European Space Agency’s ARIEL spacecraft on its way to Lagrange Point 2 (L2) – a gravitationally stable, Sun-centric orbit – where it will be shielded from the Sun and have a clear view of the sky. NASA’s JPL will manage the mission’s CASE instrument. Credit: ESA/STFC RAL Space/UCL/Europlanet-Science Office.

Remember that while we await the launch of the James Webb Space Telescope, JWST is by no means a dedicated exoplanet mission, though it will work with a small sample of exoplanets for detailed study as it shares observing time with other investigations. The ARIEL team should be able to draw from JWST’s experience as it homes in on a final target list. Keep in mind as well that ESA’s PLATO mission — PLAnetary Transits and Oscillations of stars — is also in the pipeline, slated for a 2026 launch. As I say, the tools are evolving as our focus sharpens.

tzf_img_post

Finding Alpha Centauri

It’s always breathtaking to see the band of the Milky Way under good viewing conditions. I remember so well the night I saw it best, about 20 years ago on a cold, absolutely clear night from a boat in the middle of Lake George. This is up in New York’s Adirondacks, and when I glanced up as we crossed the lake heading back to our hotel, I was simply stunned by the vista. When you contemplate what you’re looking at and think of yourself within that ghostly band, you feel somehow a deep connection to all the myriad processes that put us here as observing beings.

Now we have another fine view of the Milky Way, this time from TESS. The scientists working data from the Transiting Exoplanet Survey Satellite have just given us a composite drawn from 208 TESS images taken during the mission’s first year of science operations, which ended July 18. Have a look at the southern sky, and realize what while TESS has found 29 exoplanets thus far, another 1,000 or so are in candidate stage and being investigated.

Image: This mosaic of the southern sky was assembled from 13 images taken by NASA’s Transiting Exoplanet Survey Satellite (TESS) during its first year of science operations, completed in July 2019. The mission divided the southern sky into 13 sectors, each of which was imaged for nearly a month by the spacecraft’s four cameras. Credit: NASA/MIT/TESS.

Lots of good things to see here. TESS has divided the southern sky into 13 sectors, each of which received almost a month’s worth of imaging by the four cameras aboard. The Milky Way’s band is easily recognized, but look in the center to see the Large Magellanic Cloud, and at the top of the image, you should be able to identify the Orion Nebula, a birthing place for stars.

Can you find Alpha Centauri in this image? Here’s a second image, one showing the confirmed TESS planets to date. I’ve inserted an arrow to identify our nearest star(s).

Image: The host stars of the 29 TESS planet discoveries to date are shown on this version of the southern sky mosaic. Credit: NASA/MIT/TESS and Ethan Kruse (USRA).

TESS is doing excellent work, capturing a full sector of the sky every 30 minutes as it hunts for exoplanet transits. In the first year of operations, its CCDs captured 15,347 30-minute science images. These make up a part of the more than 20 terabytes of southern sky data returned thus far. The TESS survey of the northern sky is now underway.

tzf_img_post

Latest Findings from Voyager 2

It’s heartening to consider that the two Voyager spacecraft, though built for a 4 ½ year mission, have continued to function ten times longer than that. This fact, and data from other missions, will help us get a handle on longevity in spacecraft systems as we contemplate pushing out beyond the heliosphere with a spacecraft specifically designed for the job. Mission longevity is mysterious for it often seems to surprise even the designers, who would like to have a more concrete sense of how to ensure operations continue for decades.

Voyager 2 broke Pioneer 6’s record of 12,758 days of operation way back in 2012, but we can also consider spacecraft like Landsat 5, launched in 1984 and carrying two instruments, the Multispectral Scanner System (MSS) and the Thematic Mapper (TM). Managed by the U.S. Geological Survey (USGS), Landsat 5 completed over 150,000 Earth orbits and sent back more than 2.5 million images of Earth’s surface, with operations lasting almost three decades. Design life for Landsat 5 was estimated at three years, but it became, as Guinness World Records labels it, the ‘longest-operating Earth observation satellite.’

While the Landsat accomplishment is significant, the two Voyagers have actually taken us into a new realm, with Voyager 2 joining Voyager 1 beyond the heliosphere on November 5, 2018. Outside the protective ‘bubble’ blown by the stream of particles and magnetic fields from the Sun known as the solar wind, these craft are now the subject of five new research papers in Nature Astronomy describing the data Voyager 2 has returned since the crossing. Have a look at the relative position of the two spacecraft.

Image: This illustration shows the position of NASA’s Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto. Voyager 1 crossed the heliopause, or the edge of the heliosphere, in August 2012. Heading in a different direction, Voyager 2 crossed another part of the heliopause in November 2018. Credit: NASA/JPL-Caltech.

Note the plasma flow lines both inside and outside the heliopause. Plasma is a gas composed of charged particles, a ‘wind’ that differs in direction depending on whether its source is the Sun or the interstellar medium itself. The Voyagers have two instruments returning data on plasma at the borderline between the Sun’s domain and interstellar space. The data show hot and sparse plasma inside the heliosphere, while interstellar plasma is colder and denser. We learned from Voyager 1 that the heliosphere protects the Solar System from about 70 percent of the incoming cosmic ray radiation, which is made up of particles accelerated by exploding stars.

While Voyager 1 showed higher than expected plasma density just outside the heliosphere (an indication, researchers say, of compression), Voyager 2’s findings demonstrated slightly warmer plasma than expected, while confirming the compression at the edge of the heliosphere. Meanwhile, the spacecraft’s particle instruments (two of the five still operating instruments can detect particles in different energy ranges) showed some particles slipping across the boundary into interstellar space, indicating a more porous boundary in Voyager 2’s location outside the ‘flank’ of the heliosphere, as opposed to Voyager 1’s exit at its front.

Magnetic field issues still raise questions. Voyager 1 had shown that the magnetic field just beyond the heliopause is parallel to the magnetic field inside the heliosphere. Voyager 2’s magnetometer confirms this finding of field alignment. Ed Stone (Caltech) is the all but legendary project scientist for Voyager:

“The Voyager probes are showing us how our Sun interacts with the stuff that fills most of the space between stars in the Milky Way galaxy. Without this new data from Voyager 2, we wouldn’t know if what we were seeing with Voyager 1 was characteristic of the entire heliosphere or specific just to the location and time when it crossed.”

Having two spacecraft leaving the heliosphere has been a tremendous boon for science. Voyager 1 and Voyager 2 exited the heliosphere at different locations as well as at different times in the 11-year solar cycle. The latter keeps the solar wind mutable and frothing, something to be borne in mind when we consider spacecraft designs that could ‘sail’ on this wind, and affects the shape of the heliosphere itself, whose boundaries vary with solar changes. We learn from the new papers that neither Voyager is in undisturbed interstellar space, but rather in a churning transitional region, outside the heliosphere but still affected by its presence.

The papers, all of them in Nature Astronomy‘s October 2019 issue, are Richardson et al., “Voyager 2 plasma observations of the heliopause and interstellar medium”; Krimigis et al., “Energetic charged particle measurements from Voyager 2 at the heliopause and beyond”; Stone et al., “Cosmic ray measurements from Voyager 2 as it crossed into interstellar space”; Burlaga et al., “Magnetic field and particle measurements made by Voyager 2 at and near the heliopause”; and Gurnett & Kurth, “Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments.”

tzf_img_post

Gas Giants on Eccentric Orbits: ‘Wrecking Balls’ for the Inner System?

We often think of Jupiter as a mitigating influence on asteroid or comet strikes in the inner system, its gravity changing the trajectories of potential impactors. That would make gas giants a powerful determinant of the survivability of Earth analogues, at least in terms of habitability. While we continue to investigate the question, it’s interesting to consider the damage a gas giant on an elliptical orbit might do to habitable zone planets. Stephen Kane (UC-Riverside), working with Caltech astronomer Sarah Blunt, decided to find out what would happen if, in their modeling, they introduced an elliptical gas giant into the system of an Earth twin.

You may remember Kane’s work earlier this year combining radial velocity with direct imaging methods to find three gas giants that had been previously unobserved (citation below). The monitoring of ten target stars continues even as this new work is published. We’re beginning to find more planets at ever larger distances from their stars as radial velocity and direct imaging methods improve, allowing us to better understand how the architecture of our own Solar System measures up to systems around other stars. Kane and Blunt’s paper implies that a gas giant on an elliptical orbit does not necessarily preclude a habitable planet’s survival.

The planetary system at HR 5183 is a little over 100 light years away in Virgo, home to an eccentric gas giant in a 75 year orbit that the researchers used in their modeling. The primary here is a G-class star. Its planet has one of the longest orbital periods currently known among exoplanets. The eccentricity of this world is e = 0.84, where e = 0 would be perfectly circular, and e = 1 would be a line segment. To find out whether such a world really would be a ‘wrecking ball’ for its neighbors, the researchers introduced a habitable zone terrestrial world as a test case to study extreme system architectures and their effects on habitability.

Image: Comparison of HR 5183b’s eccentric orbit to the more circular orbits of the planets in our own solar system. Credit: W. M. Keck Observatory/Adam Makarenko.

The dynamical simulations here involved the exploration of 200 evenly spaced semi-major axes between 1.0 and 3.0 AU, intended to encompass the range of the optimistic habitable zone around such a star. Kane and Blunt then placed an Earth-mass planet at randomized starting positions and propagated the effects of the eccentric gas giant over time. Says Kane:

“In these simulations, the giant planet often had a catastrophic effect on the Earth twin, in many cases throwing it out of the solar system entirely. But in certain parts of the planetary system, the gravitational effect of the giant planet is remarkably small enough to allow the Earth-like planet to remain in a stable orbit.”

This being the case, we’re called upon to imagine the view from the surface of a habitable zone planet in this system. The gas giant is on a 75 year orbit, something akin to Halley’s Comet in our own system. Kane says that when the gas giant makes its closest approach to the terrestrial planet during that orbit, it would appear 15 times brighter than Venus, a spectacular object that would dominate the night sky before receding once again into the outer reaches.

Here’s a clip from the paper talking about the significance of these findings. Note that the Milankovitch cycles discussed below are cyclical movements — eccentricity, axial tilt, and precession — related to a planet’s orbit around a star. From the paper:

The importance of such systems from a planetary habitability perspective arises from a thorough investigation of the dynamical stability of terrestrial planetary orbits, such as the one presented here. The careful analysis of the dynamical integrations demonstrates that planets can survive within a narrow range of locations in the HZ of such systems, even in the presence of a wrecking ball whose orbital origin is likely a chaotic event involving vast exchanges of angular momentum.

So we have planetary survival in certain locations, but habitability is severely challenged:

…the case of the HR 5183 system also shows that the presence of an eccentric planet will often have a profound effect on the Milankovitch cycles of the HZ terrestrial planetary orbits, causing significant orbital oscillatory behavior. The implications for the climate effects on such worlds may rule out temperate surface conditions, although the stabilizing effects of surface liquid water oceans can also potentially prevent a climate catastrophe.

In other words, our terrestrial world in its habitable zone orbit in a system with a highly eccentric gas giant is in a dangerous position indeed, though not one that completely rules out life. This seems to represent a slight widening of habitable zone possibilities as we examine exoplanetary systems, though the ‘wrecking ball’ hypothesis still seems the most likely outcome.

The paper is Kane & Blunt, “In the Presence of a Wrecking Ball: Orbital Stability in the HR 5183 System,” Astronomical Journal Vol. 158, No. 5 (31 October 2019). Abstract / Preprint. The paper on gas giant detection is Kane et al., “Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques,” accepted at the Astronomical Journal. Preprint.

tzf_img_post

Benefits of a ‘Snow Line’ Neptune

The formation of planets like Neptune under the core accretion model involves a protoplanetary core that reaches around 10 Earth masses before beginning to pull in surrounding gas, the latter being a runaway process that quickly builds the atmosphere around the object. Core accretion is most efficient at doing this just outside the snow line, but if we want to understand and test the theory, we need to know a lot more about how planets are distributed in this region.

And that’s a problem, because recent microlensing surveys have found that planets like Neptune are most abundant much more distant from their host stars. Outward migration can account for such worlds, but we know little about exoplanets that form at the snow line, which is where the condensation of ices can factor into the emergence of a new world.

Is this just an artifact of our still evolving microlensing detection techniques? Perhaps, and exceptions to the rule can therefore be helpful. Recent work that began with a discovery by a Japanese amateur astronomer has now blossomed into a full-scale study of a snow line Neptune around a star that, unlike most viewed by microlensing, is actually fairly close. The amateur, Tadashi Kojima in Gunma Prefecture, Japan, found the object in Taurus, the beginning of observations from numerous observatories that uncovered the microlensing behind the discovery.

The planet Kojima-1Lb orbits a star 1600 light years away, while the star it passed in front of is some 2600 light years out. Remember that the curvature of spacetime in the presence of massive objects accounts for this phenomenon, as warped space around the nearby star acts as a lens that focuses the light from the background star. Within this brightening, a transient but useful phenomenon, changes in intensity can reveal a planet orbiting the foreground star, as happened here. This discovery is unusual because most microlensed planets have been observed toward galactic center, which makes sense given the sheer abundance of stars there. This one is found close and toward the galactic anticenter.

Image: Diagram illustrating the microlensing event studied in this research. Red dots indicate previous exoplanet systems discovered by microlensing. Inset: Artist’s conception of the exoplanet and its host star. Credit: The University of Tokyo.

76 days of observation by a team led by Akihiko Fukui at the University of Tokyo took advantage of 13 telescopes around the world, including two at the National Astronomical Observatory of Japan’s Okayama Astrophysical Observatory. The work, as revealed in a paper just published in the Astronomical Journal, show a Neptune-class planet orbiting a star on the border line between K and M-class dwarf status. The planet is about 20 Earth masses and orbits at 1.08 AU, snow line distance for this system.

So we’ve got a helpful Neptune at the snow line. The paper draws an interesting but highly tentative conclusion from this detection:

The orbit of Kojima-1Lb is a few times closer to the host star than the other microlensing planets around the same type of star and is likely comparable to the snow-line distance at its youth. We have estimated that the detection efficiency of this planet in this event is ?35%, which may imply that Neptunes are common around the snow line.

In other words, Fukui and colleagues calculate the a priori detection probability of this kind of planet at 35 percent, making this chance detection a possible indication of an abundance of such worlds around the snow line of other stars. The paper goes on to point out that the host star here is the brightest among all those studied in microlensed systems, offering the opportunity to do follow-up spectroscopic analysis to characterize the host star and to refine both mass and orbit of the planet through radial velocity studies.

The paper is Fukui et al. “Kojima-1Lb is a Mildly Cold Neptune around the Brightest Microlensing Host Star,” Astronomical Journal Vol. 158, No. 5 (November 1, 2019). Abstract / preprint.

tzf_img_post

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives