The Final Parsec Paradox: When Things Do Not Go Bump in the Night

Something interesting is going on in the galaxy NGC 6240, some 400 million light years from the Sun in Ophiuchus. Rather than sporting a single supermassive black hole at its center, this galaxy appears to have two, located about 3000 light years from each other. A merger seems likely, or is it? Centauri Dreams regular Don Wilkins returns to his astronomical passion with a look at why multiple supermassive black holes are puzzling scientists and raising questions that may even involve new physics. By Don Wilkins Super massive black holes (SMBH), black holes with a mass exceeding 100,000 solar masses, don’t behave as expected. When these galaxies collide, gas and dust smash into each other forming new stars. Existing stars are too far apart to collide. The two SMBH of the galaxies converge. Intuition foresees the two massive bodies coalescing into a single giant, Figure 1. The Universe, as frequently happens, ignores our intuition. The relevant force is dynamical friction. [1-4] As a...

read more

The Search for Things that Matter

Overpopulation has spawned so many dystopian futures in science fiction that it would be a lengthy though interesting exercise to collect them all. Among novels, my preference for John Brunner’s Stand on Zanzibar goes back to my utter absorption in its world when first published in book form in 1968. Kornbluth’s “The Marching Morons” (1951) fits in here, and so does J.G. Ballard’s Billenium (1969), and of course Harry Harrison’s Make Room! Make Room! from 1966, which emerged in much changed form in the film Soylent Green in 1973. You might want to check Science Fiction and Other Suspect Ruminations for a detailed list, and for that matter on much else in the realm of vintage science fiction as perceived by the pseudonymous Joachim Boaz (be careful, you might spend more time in this site than you had planned). In any case, so strongly has the idea of a clogged, choking Earth been fixed in the popular imagination that I still see references to going off-planet as a way of relieving...

read more

On Ancient Stars (and a Thought on SETI)

I hardly need to run through the math to point out how utterly absurd it would be to have two civilizations develop within a few light years of each other at roughly the same time. The notion that we might pick up a SETI signal from a culture more or less like our own fails on almost every level, but especially on the idea of time. A glance at how briefly we have had a technological society makes the point eloquently. We can contrast it to how many aeons Earth has seen since its formation 4.6 billion years ago. Brian Lacki (UC-Berkeley) looked into the matter in detail at a Breakthrough Discuss meeting in 2021. Lacki points out that our use of radio takes up 100,000,000th of the lifespan of the Sun. We must think, he believes, in terms of temporal coincidence, as the graph he presented at the meeting shows. Note the arbitrary placement of a civilization at Centauri B, and others at Centauri A and C, along with our own timeline. The thin line representing our civilization actually...

read more

SPECULOOS-3b: A Gem for Atmospheric Investigation

“What is this fascination of yours with small red stars?” a friend asked in a recent lunch encounter, having seen something I wrote a few years back about TRAPPIST-1 in one of his annual delvings into the site. “They’re nothing like the Sun, to quote Shakespeare, and anyway, even if they have planets, they can’t support life. Right?” Hmmm. The last question is about as open as a question can get. But my friend is on to something, at least in terms of the way most people think about exoplanets. My fascination with small red stars is precisely their difference from our familiar G-class star. An M-dwarf planet bearing life would be truly exotic, in an orbit lasting mere days rather than months (depending on the class of M-dwarf), and perhaps tidally locked, so inhabitants would see their star fixed in the sky. How science fictional can you get? And we certainly don’t have enough data to make the call on life around any of them. Let’s talk a minute about how we classify small red stars,...

read more

Galactic Insights into Dark Matter

Put two massive galaxy clusters into collision and you have an astronomical laboratory for the study of dark matter, that much discussed and controversial form of matter that does not interact with light or a magnetic field. We learn about it through its gravitational effects on normal matter. In new work out of Caltech, two such clusters, each of them containing thousands of galaxies, are analyzed as they move through each other. Using data from observations going back decades, the analysis reveals dark and normal matter velocities decoupling as a result of the collision. Collisions on galactic terms have profound effects on the vast stores of gas that lie between individual galaxies, causing the gas to become roiled by the ongoing passage. Counter-intuitively, though, the galaxies themselves are scarcely affected simply because of the distances between them, and for that matter between the individual stars that make up each. We need to keep an eye on work like this because...

read more

On Astronomical Accidents, and the Proxima Centauri ‘Signal’ that Wasn’t

One night a few years back I had a late night call from a friend who was involved in Breakthrough Starshot, the attempt to design a probe that could reach nearby stars and return data with transit times of decades rather than centuries. His news was surprising. The Parkes radio dish in Australia, then being used by the Breakthrough Listen SETI project, had detected a signal that seemed to come from Proxima Centauri. “What’s interesting,” said he, “is that when you move the dish off Proxima, the signal disappears.” You probably remember this episode, which had a brief moment in the news and may well live on among the conspiracy-minded in the wackier regions of cyberspace. We know now that the signal was some form of radio frequency interference, commonly abbreviated RFI. In any case, our conversation was relatively tame because the idea of a terrestrial explanation seemed inevitable, no matter how tantalizing the first look at this signal. After all, with all the years of SETI effort...

read more

Science Fiction and the Interstellar Imagination

"We were dreamers, dreaming greatly, in the man-stifled town; We yearned beyond the sky-line where the strange roads go down. Came the Whisper, came the Vision, came the Power with the Need…" -- Kipling, from "The Song of the Dead" We’re lucky that science fiction fans are such packrats. They not only keep beloved books and magazine issues from their past but also catalog them relentlessly. Because of both these traits, I can turn to my own bookshelf and pull out the November, 1957 issue of Astounding Science Fiction to see P. Schuyler Miller’s review of John Campbell’s Islands of Space, in which he described the novel as “very characteristic of the best ‘hard’ science fiction of its day.” Miller had a lot to do in subsequent book reviews for the magazine with establishing ‘hard SF’ as a category. Campbell’s book, extensively revised from its original appearance in the spring, 1931 issue of Amazing Stories Quarterly, is an interesting curiosity in being the first appearance of a...

read more

Where Does the Kuiper Belt End?

Looking for new Kuiper Belt targets for the New Horizons spacecraft pays off in multiple ways. While we can hope to find another Arrokoth for a flyby, the search also contributes to our understanding of the dynamics of the Kuiper Belt and the distribution of comets in the inner Oort Cloud. Looking at an object from Earth or near-Earth orbit is one thing, but when we can collect data on that same object with a spacecraft moving far from the Sun, we extend the range of discovery. And that includes learning new things about KBOs that are already cataloged, as a new paper on observations with the Subaru Telescope makes clear. The paper, in the hands of lead author Fumi Yoshida (Chiba Institute of Technology) and colleagues, points to Quaoar and the use of New Horizons data in spawning further research. A key aspect of this work is the phase angle as the relative position of the object changes with different observing methods. One of the unique perspectives of observing KBOs from a...

read more

Remembering the Y2K ‘Flasher’

Transients have always been intriguing because whether at optical, radio or other wavelengths, they usually flag an object worth watching. Consider a supernova, or a Fast Radio Burst. But non-repeating transients can have astronomers both professional and amateur tearing their hair out. What was Henry Cordova, for instance, seeing in the Florida sky back in 1999? The date seems significant, as we were moving toward the Y2K event, and despite preparation, there was some concern about its effects in computer coding. Henry, a retired map maker and geographer as well as a dedicated astronomer, had a transient that did repeat, but only for a short time, and one that may well have been entangled in geopolitical events of the time. I’m reminded of our reliance on electronics, and the fact that some 60,000 commercial flights have encountered bogus GPS signals, according to The New York Times (strikingly, the U.S. has no civilian backup system for GPS). What goes on in orbit may keep us...

read more

Space Butterfly: A Living Star Probe

Browsing through the correspondence that makes up Freeman Dyson’s wonderful Maker of Patterns: An Autobiography Through Letters (Liveright, 2018), I came across this missive, describing to his parents in 1958 why space exploration occupied his time at General Atomic, where he was working on Orion, the nuclear pulse concept that would explode atomic devices behind huge pusher plates to produce thrust. Dyson had no doubts about the value of humanity moving ever outward as it matured: I am something of a fanatic on this subject. You might as well ask Columbus why he wasted his time discovering America when he could have been improving the methods of Spanish sheep farming. I think the parallel is a close one… We shall know what we go to Mars for only after we get there. The study of whatever forms of life exist on Mars is likely to lead to better understanding of life in general. This may well be of more benefit to humanity than irrigating ten Saharas. But that is only one of many...

read more

The Beamed Lightsail Emerges

If you look at Galaxy’s December, 1962 issue, which I have in front of me from my collection of old SF magazines, you’ll find a name that appears only once in the annals of science fiction publishing: George Peterson Field. The article, “Pluto - Doorway to the Stars,” is actually by Robert Forward, who was at that time indulging in a time-honored practice, concealing an appearance in a science fiction venue so as not to raise any eyebrows with management at his day job at Hughes Aircraft Company. Aeronautical engineer Carl Wiley had done the same thing with an article on solar sails in Astounding back in May of 1951, choosing the pseudonym Russell Saunders as cover for his work at Goodyear Aircraft Corporation (later Lockheed Martin). Both these articles were significant, as they introduced propulsion concepts for deep space to a popular audience outside the scientific journals. While solar sails had been discussed by the likes of J. D. Bernal and Konstantin Tsiolkovsky, the idea of...

read more

Finding a Terraforming Civilization

Searching for biosignatures in the atmospheres of nearby exoplanets invariably opens up the prospect of folding in a search for technosignatures. Biosignatures seem much more likely given the prospect of detecting even the simplest forms of life elsewhere – no technological civilization needed – but ‘piggybacking’ a technosignature search makes sense. We already use this commensal method to do radio astronomy, where a primary task such as observation of a natural radio source produces a range of data that can be investigated for secondary purposes not related to the original search. So technosignature investigations can be inexpensive, which also means we can stretch our imaginations in figuring out what kind of signatures a prospective civilization might produce. The odds may be long but we do have one thing going for us. Whereas a potential biosignature will have to be screened against all the abiotic ways it could be produced (and this is going to be a long process), I suspect a...

read more

Space Exploration and the Transformation of Time

Every now and then I run into a paper that opens up an entirely new perspective on basic aspects of space exploration. When I say ‘new’ I mean new to me, as in the case of today’s paper, the relevant work has been ongoing ever since we began lofting payloads into space. But an aspect of our explorations that hadn’t occurred to me was the obvious question of how we coordinate time between Earth’s surface and craft as distant as Voyager, or moving as close to massive objects as Cassini. We are in the realm of ‘time transformations,’ and they’re critical to the operation of our probes. Somehow considering all this in an interstellar sense was always much easier for me. After all, if we get to the point where we can push a payload up to relativistic speeds, the phenomenon of time dilation is well known and entertainingly depicted in science fiction all the way back to the 1930s. But I remember reading a paper from Roman Kezerashvili (New York City College of Technology) that analyzed the...

read more

The Ambiguity of Exoplanet Biosignatures

The search for life on planets beyond our Solar System is too often depicted as a binary process. One day, so the thinking goes, we'll be able to directly image an Earth-mass exoplanet whose atmosphere we can then analyze for biosignatures. Then we'll know if there is life there or not. If only the situation were that simple! As Alex Tolley explains in his latest essay, we're far more likely to run into results that are so ambiguous that the question of life will take decades to resolve. Read on as Alex delves into the intricacies of life detection in the absence of instruments on a planetary surface. by Alex Tolley "People tend to believe that their perceptions are veridical representations of the world, but also commonly report perceiving what they want to see or hear." [17] Evolution has likely selected us to see dangerous things whether they are there or not. Survival favors avoiding a rustling bush that may hide a saber-toothed cat. We see what we are told to see, from gods in...

read more

The Physics of Starship Catastrophe

Now that gravitational wave astronomy is a viable means of investigating the cosmos, we’re capable of studying extreme events like the merger of black holes and even neutron stars. Anything that generates ripples in spacetime large enough to spot is fair game, and that would include supernovae events and individual neutron stars with surface irregularities. If we really want to push the envelope, we could conceivably detect the proposed defects in spacetime called cosmic strings, which may or may not have been formed in the early universe. The latter is an intriguing thought, a conceivably observable one-dimensional relic of phase transitions from the beginning of the cosmos that would be on the order of the Planck length (about 10-35 meters) in width but lengthy enough to encompass light years. Oscillations in these strings, if indeed they exist, would theoretically generate gravitational waves that could be involved in the large-scale structure of the universe. Because new physics...

read more

An X-Ray Study of Exoplanet Habitability

Great observatories work together to stretch the boundaries of what is possible for each. Data from the Chandra X-ray Observatory were used in tandem with the James Webb Space Telescope, for example, to observe the death of a star as it was consumed by a black hole. JWST’s infrared look at this Tidal Disruption Event (TDE) helped show the structure of stellar debris in the accretion disk of the black hole, while Chandra charted the high-energy processes at play in the cataclysmic event. Or have a look at the image below, combining X-ray and infrared data from these two instruments along with the European Space Agency’s XMM-Newton, the Spitzer Space Telescope and optical data from Hubble and the European Southern Observatory's New Technology Telescope to study a range of targets. Image: Four composite images deliver dazzling views from NASA’s Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. Each image combines Chandra’s X-rays — a...

read more

Shutting Down Chandra: Will We Lose Our Best Window into the X-ray Universe?

Our recent discussions of X-ray beaming to propel interstellar lightsails seem a good segue into Don Wilkins’ thoughts on the Chandra mission. Chandra, of course, is not a deep space probe but an observatory, and a revolutionary one at that, with the capability of working at the X-ray wavelengths that allow us to explore supernovae remnants, pulsars and black holes, as well as making observations that advance our investigation of dark matter and dark energy. This great instrument swims into focus today because it faces a funding challenge that may result in its shutdown. It’s a good time, then, to take a look at what Chandra has given us since launch, and to consider its significance as efforts to save the mission continue. We should get behind this effort. Let's save Chandra. by Don Wilkins On July 23, 1999, the Chandra X-ray Observatory deployed from Space Shuttle Columbia. Chandra along with the Hubble Space Telescope, Spitzer Space Telescope (decommissioned when its liquid helium...

read more

Why X-Rays Can’t Push Interstellar Sails

Although solar sails were making their way into the aerospace journals in the late 1950s, Robert Forward was the first scientist to consider using laser beams rather than sunlight to drive a space sail. That concept, which György Marx picked up on in his 1966 paper, opened the door to interstellar mission concepts. Late in life in an unpublished memoir, Forward recalled reading about Theodore Maiman’s work on lasers at Hughes Research Laboratories, and realizing that this was a way to create a starship. His 1962 article (citation below) laid out the idea for the journal Missiles and Rockets and was later reprinted in Science Digest. Marx surely knew the Forward article and his subsequent paper in Nature probed how to achieve this goal. Image: One of the great figures of interstellar studies, Robert Forward among many other things introduced and explored the principles of beamed propulsion. Credit: UAH Library Robert L. Forward Collection. Marx was at that time a professor of...

read more

Going Interstellar via Budapest

Studying the rich history of interstellar concepts, I realized that I knew almost nothing about a figure who is always cited in the early days of beamed sail papers. Whereas Robert Forward is considered the source of so many sail concepts, the earliest follow-up to his 1962 paper on beamed sails for interstellar purposes is by one G. Marx. The paper is “Interstellar Vehicle Propelled by Terrestrial Laser Beam,” which ran in Nature on July 2, 1966. Who is this G. Marx? My ever reliable sources quickly came through when I asked if any of them had known the man. None had, though all were familiar with the paper, but Al Jackson sent me a copy of it along with another by J. L. Redding (Bishop’s University, Canada), who published a correction to the Nature paper on February 11, 1967. It didn’t reduce my confusion that Redding’s short contribution bears the exact same title as Marx’s. My other contacts on Marx had no personal experience with him either but were curious to learn more. Image:...

read more

A Shifting, Seething Solar Wind

In search of ever-higher velocities leaving the Solar System, we need to keep in mind the options offered by the solar wind. This stream of charged plasma particles flowing outward from the Sun carves out the protective bubble of the heliosphere, and in doing so can generate ‘winds’ of more than 500 kilometers per second. Not bad if we’re thinking in terms of harnessing the effect, perhaps by a magnetic sail that can create the field needed to interact with the wind, or an electric sail whose myriad tethers, held taut by rotation, create an electric field that repels protons and produces thrust. But like the winds that drove the great age of sail on Earth, the solar version is treacherous, as likely to becalm the ship as to cause its sails to billow. It’s a gusty, turbulent medium, one where those velocities of 500 kilometers and more per second can as likely fall well below that figure. Exactly how it produces squalls in the form of coronal mass ejections or calmer flows is a topic...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives