Centauri Dreams

Imagining and Planning Interstellar Exploration

Kepler-1649c: Interesting Earth-sized Planet Turns Up in Kepler Data

What intrigues me about Kepler-1649c, a newly discovered planet thrust suddenly into the news, isn’t the fact that it’s potentially in its star’s habitable zone, nor that it is close to being Earth-sized (1.06 times Earth’s radius). Instead, I’m interested in the way it was found. For this is a world turned up in exhaustive analysis of data from the original Kepler mission. Bear in mind that data from the original Kepler field ceased being gathered a full seven years ago.

I share Jeff Coughlin’s enthusiasm on the matter. Coughlin is an astronomer affiliated with the SETI Institute who is a co-author on the new paper, which appears in Astrophysical Journal Letters. One of the goals of the mission that began as Kepler and continued (on different star fields) as K2 was to find the fraction of stars in the galaxy that have planets in the habitable zone, using transit methods for initial detection and radial velocity follow-up on Earth. Of the new find, made with an international team of scientists, Coughlin says:

“It’s incredible to me that we just found [Kepler-1649c] now, seven years after data collection stopped on the original Kepler field. I can’t wait to see what else might be found in the rich dataset from Kepler over the next seven years, or even seventy.”

Yes, because we’re hardly through with a dataset that has taken in close to 200,000 stars. What the new planet reminds us is that the initial detection stage of Kepler’s work long ago ceded to analysis of how many of the acquired signals are due to systematic effects in the instrumentation, or variable stars, or perhaps binaries, for so many things can appear to be the signature of a planet when they are not. Making computer algorithms to automate this work has occurred only after intensive human study to learn the best ways to distinguish between signals.

But consider: The algorithm, called Robovetter, that was used to distinguish false positives was working on data in which only 12 percent of the transit signals turned out to be planets. We have false positives galore, out of which we now get the Kepler False Positive Working Group to serve as a double-check on the algorithm’s work. The KFPWG is a dedicated team indeed, taking years to review the thousands of signals from the original Kepler dataset. Kepler-1649c comes out of this review, a world that had been misclassified by the automated methods earlier on. Clearly, humans and machines learn from each other as they make such difficult calls.

Image: A comparison of Earth and Kepler-1649c, an exoplanet only 1.06 times Earth’s radius. Credit: NASA/Ames Research Center/Daniel Rutter.

I yield to the experts when it comes to habitability, and trust our friend Andrew LePage will weigh in soon with his own analysis. What we do know is that this planet receives about 75 percent of the amount of light Earth receives from the Sun, though in this case the star in question is a red dwarf of spectral type M5V, the same as Proxima Centauri, fully 300 light years out. As always with red dwarfs, we bear in mind that stellar flares are not uncommon. The planet orbits its star every 19.5 days. We have no information about its atmosphere.

Even so, lead author Andrew Vanderburg (University of Texas at Austin) notes the potential for habitability:

“The more data we get, the more signs we see pointing to the notion that potentially habitable and Earth-sized exoplanets are common around these kinds of stars. With red dwarf stars almost everywhere around our galaxy, and these small, potentially habitable and rocky planets around them too, the chance one of them isn’t too different than our Earth looks a bit brighter.”

There is a planet on an orbit interior to Kepler-1649c, a super-Earth standing in relation to the former much as Venus does to the Earth. The two demonstrate an uncommon nine-to-four orbital resonance, one that hints at the possibility of a third planet between them. This would give us a pair of three-to-two resonances, a much more common scenario, though no trace of the putative world shows up in the data. If there, it is likely not a transiting planet.

I rather like the image that comes out of NASA Ames, where the Kepler effort is managed, but I like it as a kind of science fictional art, the sort of thing to be found on SF paperbacks. It’s evocative and suggestive, but of course we have no idea what this world really looks like.

Image: An illustration of what Kepler-1649c could look like from its surface. Credit: NASA/Ames Research Center/Daniel Rutter.

The paper is Vanderburg et al., “A Habitable-zone Earth-sized Planet Rescued from False Positive Status,” Astrophysical Journal Letters Vol. 893, No. 1 (1 April 2020). Abstract.

tzf_img_post

PUNCH: Imaging the Solar Wind

Get ready for the Polarimeter to UNify the Corona and Heliosphere (PUNCH) mission, which will begin popping up even as Centauri Dreams continues to consider heliophysics in relation to proposed missions far beyond the Solar System. We’ve seen recently that the Applied Physics Laboratory at Johns Hopkins is looking, under the leadership of Ralph McNutt, at a mission to 1000 AU, using an Oberth maneuver at the Sun as a possible way to reach such distances with a flight time of 50 years (see The 1000 AU Target). Thus do heliophysics and deep space intersect in unexpected ways, and not just at APL but JPL and elsewhere as we look toward the upcoming decadal survey.

As for PUNCH, it’s all about the solar wind and the connection between it and the Sun’s corona, says PUNCH principal investigator Craig DeForest of Southwest Research Institute’s Space Science and Engineering Division:

“For over 50 years, we’ve studied the solar corona by remote imaging and the solar wind by direct sampling. PUNCH will bridge that gap by imaging the solar wind itself as it leaves the outermost reaches of the Sun’s corona.”

Image: NASA has selected Southwest Research Institute to lead a microsatellite mission to image the Sun’s outer corona. PUNCH proposes a constellation of four suitcase-sized satellites that will orbit the Earth, studying how the Sun’s corona connects with the interplanetary medium, to better understand how coronal structures infuse the solar wind with mass and energy. Credit: Southwest Research Institute.

The four PUNCH spacecraft will orbit the Earth as a constellation in a polar orbit. Aboard one will be a coronagraph whose Narrow Field Imager will watch the Sun’s corona continuously, while wide-angle cameras and Wide Field Imagers optimized to image the solar wind with a 90 degree field of view are aboard the other three. The good news about PUNCH is that it has now passed the System Requirements Review/Mission Definition Review, a major step for this NASA Small Explorer (SMEX) mission.

The spacecraft will be built, along with the Wide Field Imagers, by the Southwest Research Institute (SwRI), while the US Naval Research Laboratory will produce the Narrow Field Imager, with additional contributions from the Rutherford Appleton Laboratory in Oxfordshire, England. The work has continued despite the extraordinary conditions forced by COVID-19. Says principal investigator Craig DeForest (SwRI):

“Preparing for the SRR/MDR review was an unexpected challenge. Team members have been working at home for over three weeks, yet they met the challenge and presented their design in written and oral presentations culminating in the positive decision from our review board. I’m very proud of this team for what they’ve accomplished during less than ideal collaboration conditions. While spacecraft are constructed out of aluminum and exotic metals, they are initially made of requirements documents.”

Image: SwRI developed and prototyped the Wide Field Imager for the PUNCH mission. The dark baffles in the top recess allow the instrument to image objects over a thousand times fainter than the Milky Way. Credit: Southwest Research Institute.

A major document requirement has now been passed. Insights into the solar wind are sure to flow from this mission. And from a deep space perspective, a number of concepts have been advanced that would ‘ride’ the solar wind despite its turbulence. More accurate modeling in such studies will surely be an ancillary result from PUNCH, as will improved understanding of conditions near the Sun for future spacecraft on close flybys.

tzf_img_post

A Formation Scenario for ‘Oumuamua

The interstellar object we call ‘Oumuamua was bound to be fascinating no matter what it actually was. You discover the first incoming object from interstellar space only once. But this one had its own share of peculiarities. Here was what was assumed to be a comet, but one that showed no outgassing as it reached perihelion and in fact seemed to be unusually dry. Here was an object of an apparently elongated shape, an aspect ratio with which we had nothing to compare in our own system. A tiny but detectable acceleration on the way out of the system seemed to indicate later outgassing, but how was that consistent with earlier data?

I think Harvard’s Avi Loeb was exactly right to point out that among the possible explanations of new objects, we can’t disregard the possibility of a technology from another civilization. That ‘Oumuamua was a natural object is an obvious default position, but we are at a stage in our understanding of the cosmos when we realize that the conditions for life occur elsewhere. We don’t know how often it forms — abiogenesis may be spectacularly rare. But maybe not.

But while we’ll never know with 100 percent certainty what ‘Oumuamua was, we can look forward to many more interstellar objects to evaluate as new instrumentation comes online. Meanwhile, that apparently elongated shape that so distinguished ‘Oumuamua has come under scrutiny from Yun Zhang (National Astronomical Observatories of the Chinese Academy of Sciences) and Douglas N. C. Lin (UC-Santa Cruz), who have run computer simulations that show how it could have formed and go on to explain its other oddball quirks.

“We showed that ‘Oumuamua-like interstellar objects can be produced through extensive tidal fragmentation during close encounters of their parent bodies with their host stars, and then ejected into interstellar space,” says Lin. “Our objective is to come up with a comprehensive scenario, based on well understood physical principles, to piece together all the tantalizing clues.”

Image: This illustration shows the tidal disruption process that can give rise to ‘Oumuamua-like objects. Credit: NAOC/Y. Zhang.

Tidal forces are the key to this work, which is described in a paper in Nature Astronomy. Think Shoemaker-Levy 9, whose spectacular disintegration produced the famous ‘chain of pearls’ as the comet was progressively torn apart by Jupiter’s gravity. In Zhang and Lin’s simulations, the modeling of the structural dynamics of an object passing close to its star produces extremely elongated fragments that are then ejected into deep space. The work shows that aspect ratios even greater than 10 to 1 are not out of the question.

Could such a shape be stable? Evidently so, for the scientists used thermal modeling to show that at tight stellar distances, the surface of such an object would melt and then recondense on its way out of the system, producing a crust that should remain cohesive. We get a ‘shard’ of material being flung into the cosmos in a random direction. Moreover, this is a process that contains within it other unusual aspects of the ‘Oumuamua encounter with our system.

“Heat diffusion during the stellar tidal disruption process also consumes large amounts of volatiles, which not only explains ‘Oumuamua’s surface colors and the absence of visible coma, but also elucidates the inferred dryness of the interstellar population,” Zhang said. “Nevertheless, some high-sublimation-temperature volatiles buried under the surface, like water ice, can remain in a condensed form.”

So we circle back to the fact that ‘Oumuamua showed no cometary activity but an apparent outgassing sufficient to produce a non-gravitational motion, albeit a tiny one. Under the modeling Zhang and Lin performed, the warmth of the approach to perihelion would have activated residual water stores that match the observed trajectory of ‘Oumuamua.

Image: A ‘Oumuamua-like object produced by a simulation of the tidal disruption scenario proposed by Zhang and Lin. Credit: NAOC/Y. Zhang; background: ESO/M. Kornmesser.

We should expect quite a few more interstellar objects in our future. Zhang and Lin believe that on average, a single planetary system should eject a total of about a hundred trillion objects like ‘Oumuamua. The tidal forces in play in these simulations work for any number of source objects, from super-Earths to long-period comets and other material from a debris disk. In other words, there is hardly a shortage of material out of which to form interstellar objects. Doubtless our Sun has spewed its share into nearby interstellar space, shard-like or not.

We’ve had a second interstellar object since ‘Oumuamua, the much more comet-like 2I/Borisov. Whether Zhang and Lin are right in their assessment may eventually become clear as we detect and study further examples. Given their apparent plenitude, we should by virtue of these simulations assume that some, if not many, will share some of the traits of ‘Oumuamua. Eventually we’ll build a catalog that may teach us something about planetary evolution.

The paper is Zhang and Lin, “Tidal fragmentation as the origin of 1I/2017 U1 (‘Oumuamua),” Nature Astronomy 13 April 2020 (abstract).

tzf_img_post

Measuring a Brown Dwarf’s Winds

The brown dwarf 2MASS J10475385+2124234 is about the size of Jupiter, but maybe 40 times more massive. 33.2 light years from Earth, this object is in that category between planet and star, not massive enough to launch the same kind of nuclear reactions that power the Sun, but considerably more massive than any planet. Combining two tools — the Very Large Array (VLA) and NASA’s Spitzer Space Telescope — scientists have now measured the wind speed here.

Katelyn Allers (Bucknell University), who led the research team, realized that the combination of radio observations (VLA) and infrared (Spitzer) would make this kind of measurement possible, and expressed surprise that no one else had thought to do it before. After all, we already knew that the rotation period of Jupiter found through radio measurements differs from the period found at visible and infrared wavelengths. That disparity is key to the new measurement.

For the difference is the result of two separate phenomena. Radio emissions from Jupiter are caused by electrons interacting with the planet’s huge magnetic field, located deep in the interior. The infrared emission is measured at the top of the atmosphere. Because the atmosphere is rotating more quickly than the interior, we have a difference in velocity due to atmospheric winds. The same kind of measurement is now put to use at a brown dwarf.

“Since the magnetic field originates deep in the planet, or in this case brown dwarf, the radio data allows us to determine the interior period of rotation,” Allers says. “When you have an interior rotation rate and an atmospheric rotation rate, you can compare them to see how fast the wind is blowing.”

Image: Artist’s conception of a brown dwarf and its magnetic field. The magnetic field, rooted deep in its interior, rotates at a different rate than the top of the atmosphere. The difference allowed astronomers to determine the object’s wind speed. Credit: Bill Saxton, NRAO/AUI/NSF.

Allers and company observed 2MASS J10475385+2124234 with Spitzer in 2017 and 2018, noting the interesting fact that its infrared brightness varies regularly, indicating a long-lived feature of some sort in the upper atmosphere. Does this brown dwarf have something analogous to Jupiter’s Great Red Spot? That we can’t know at this point, but a set of VLA observations from 2018 measured the rotation period of the brown dwarf’s interior, so we do know about the winds.

The Jupiter analogy holds, for the brown dwarf’s atmosphere does indeed rotate faster than its interior, allowing the calculation of a wind speed of about 2300 kilometers per hour. By comparison, Jupiter’s wind speed clocks in at around 370 kilometers per hour. According to Allers, the difference is in agreement with theory and simulations of brown dwarf wind speeds.

This initial measurement may alert us to a technique that can measure winds not only on other brown dwarfs but on some giant exoplanets, although as co-author Peter K.G. Williams notes, the magnetic fields of such worlds are weaker than those of brown dwarfs, so the radio measurements would be conducted at lower frequencies than those used in the 2MASS J10475385+2124234 work. Williams (Center for Astrophysics | Harvard & Smithsonian) led the radio astronomical observations at the VLA.

“For the first time ever, we measured the speed of the winds of a brown dwarf — too big to be a planet, too small to be a star,” Williams adds. “The results rule out a few unusual models and prove that this new technique works and can be applied to more objects… This new technique opens the way to better understanding the behavior of atmospheres that are unlike anything found in our solar system.”

Image: Brown dwarf, left, and Jupiter, right. Artist’s conception of brown dwarf illustrates magnetic field and atmosphere’s top, which were observed at different wavelengths to determine wind speeds. Credit: Bill Saxton, NRAO/AUI/NSF.

The paper is Allers et al., “A Measurement of the Wind Speed on a Brown Dwarf,” Science Vol. 368, Issue 6487 (10 April 2020). Abstract.

tzf_img_post

Cassini: How Saturn Heats Its Upper Atmosphere

Given their distance from the Sun, the gas and ice giants of our Solar System should not have upper atmospheres as hot as they are. Clearly, something is happening at the planets themselves to account for the warmth, and new analysis of Cassini data, just published in Nature Astronomy, lays out the case for auroral activity at the north and south poles of Saturn as the explanation there. The paper offers the results of the most complete mapping yet made of the temperature and density of a gas giant planet’s upper atmosphere.

Tommi Koskinen, a co-author on the paper describing these findings is a member of Cassini’s Ultraviolet Imaging Spectrograph (UVIS) team:

“The results are vital to our general understanding of planetary upper atmospheres and are an important part of Cassini’s legacy. They help address the question of why the uppermost part of the atmosphere is so hot while the rest of the atmosphere – due to the large distance from the Sun – is cold.”

Image: This false-color composite image, constructed from data obtained by NASA’s Cassini spacecraft, shows the glow of auroras streaking out about 1,000 kilometers (600 miles) from the cloud tops of Saturn’s south polar region. It is among the first images released from a study that identifies images showing auroral emissions out of the entire catalogue of images taken by Cassini’s visual and infrared mapping spectrometer. Credit: NASA/JPL/ASI/University of Arizona/University of Leicester.

The process at Saturn is much the same as what drives Earth’s auroral activity. Plasma from the solar wind moves along magnetic field lines in the upper atmosphere, where electrons collide with atmospheric atoms and molecules, exciting them to higher energy levels that radiate light at various colors and wavelengths. The differences in atmospheric composition mean that at Saturn, the light we see comes from emissions of molecular and atomic hydrogen.

Like Voyager, the trove of Cassini data keeps churning up new insights. In this case, we’re dealing with data collected during the spacecraft’s Grand Finale, the 22 breathtakingly tight orbits made before the craft was flown into Saturn’s atmosphere to protect potentially life-bearing moons like Enceladus. Cassini had already orbited Saturn for more than 13 years and was at the end of its fuel supply, but those final orbits were exceedingly productive.

Targeting bright stars in the constellations of Orion and Canis Major, Cassini spent six weeks observing the stars rising and setting behind the planet, allowing scientists to measure the changes in starlight passing through the atmosphere. The temperature map used in the new paper relies on density measurements that provided the information needed to calculate atmospheric temperatures. Temperatures were found to peak near the auroras, giving credence to the idea that auroral electric currents are the heat source for the upper atmosphere.

Image; The aurora at Saturn’s southern pole is visible in these false-color images, gathered by Cassini’s ultraviolet imaging spectrograph (UVIS) on June 21, 2005. Blue represents aurora emissions from hydrogen gas excited by electron bombardment, while red-orange represents reflected sunlight. The images show that the aurora lights at the polar regions respond rapidly to changes in the solar wind. Previous images have been taken closer to the equator, making it difficult to see the polar regions. Changes in the emissions inside the Saturn south-pole aurora are visible by comparing the two images, taken about one hour apart. The brightest spot in the left aurora fades, and a bright spot appears in the middle of the aurora in the second image. Credit: NASA/JPL/University of Colorado.

The rate of density decrease in the atmosphere depends on temperature, and the combination of temperature and density measurements helped the researchers determine the speed of the winds at altitude. Thus we get a glimpse of the zone where space weather interacts directly with a planet, showing how a global wind system distributes energy that is initially accumulated near the poles and then flows on into the equatorial regions. We wind up with the observed temperatures at altitude that are twice what we would expect from solar heating alone.

The paper is Brown et al., “A pole-to-pole pressure-temperature map of Saturn’s thermosphere from Cassini Grand Finale data,” Nature Astronomy 6 April 2020 (abstract).

tzf_img_post

Impact in the Outer System

We looked recently at Voyager 2’s flyby of Uranus, via a new paper that examined the craft’s magnetometer data to draw out information about the planet’s magnetic environment. Science fiction author Stanley Weinbaum, author of the highly influential “A Martian Odyssey” in 1935, christened Uranus ‘The Planet of Doubt’ in a short story of the same name. Weinbaum couldn’t have known about the world’s magnetic field axis, which we’ve learned is tilted 60 degrees away from its spin axis. The latter itself is 98 degrees off its orbital plane. Doubtful planet indeed.

Here we have a world that is spinning on its side, one that demands answers as to how it got that way. A giant impact at some point in its history is a natural assumption, but how do we explain the fact that the Uranian moons as well as the planet’s ring system all show the same 98 degree orbital tilt as their parent? Back in 2011, a team led by Alessandro Morbidelli (Observatoire de la Cote d’Azur) ran a variety of simulations to test impact scenarios and discovered that a sufficiently early impact could have reformed the entire protoplanetary disk, leading to its 27 moons being in the position we see today. See the Centauri Dreams post A New Slant on the Planet of Doubt for more on the Morbidelli et al. paper.

Image: Uranus is uniquely tipped over among the planets in our Solar System. Uranus’ moons and rings are also orientated this way, suggesting they formed during a cataclysmic impact which tipped it over early in its history. Credit: Lawrence Sromovsky, University of Wisconsin-Madison/W.W. Keck Observatory/NASA.

Now we have another look at the problem, this from a team led by Shigeru Ida (Earth-Life Science Institute, Tokyo Institute of Technology). The key to this new paper is the understanding that while impacts would have been more common in the early Solar System than now, the outer planets would have experienced impacts that were different in result than those in the inner system. A rocky Mars-sized object might smack into a rocky Earth to create our Moon, but collisions between two icy objects have different results in the outer Solar System.

Out here, we’re dealing with planets with an abundance of volatiles, elements that would be gases or liquids in the warmer regions of the inner system, but are frozen at large distances from the Sun. The temperature needed to vaporize water ice is low, and the team assumes, reasonably, that both Uranus and its impactor were dominated by ices. Thus an impact early in the formation history of Uranus would have vaporized this ice, with leftover materials remaining gaseous and becoming incorporated primarily into the forming planet. Ida’s computer modeling shows that such impacts produce not one or two large moons but a number of small ones.

The inclination of both ring and moon system at Uranus makes it clear that the impact was early and formative for the entire Uranian system. Bear in mind that the ratio of the planet’s mass to its moons is larger than the ratio of Earth’s mass to its Moon by a factor of more than one hundred. Working with substantial water vapor mass loss, the researchers’ simulation reproduces the observed mass-orbit configuration of the Uranian satellites by incorporating the predicted distribution of ices as they re-condense. The results parallel the system we see today, indicating it is the result of the evolution of this volatile-laden impact-generated disk.

The authors contrast this with the giant impact model for Earth’s Moon, arguing that about half of the solid or liquid disk created by the strike was integrated into the Moon. The difference is the high condensation temperature at Earth’s orbital distances, meaning that the rocky and liquid material of the Earth-Moon impact would have solidified quickly, allowing the Moon to collect a significant amount of the debris created by the collision due to its gravity shortly after impact.

The work may have applications in other stellar systems. From the paper:

We have shown that the current Uranian major satellites are beautifully reproduced by the derived analytical formulas based on viscous spreading and cooling of the disk generated by an impact that is constrained by the spin period and the tilted spin, independent of details of the initial disk parameters. Although we have focused on Uranus, the model here provides a general scenario for satellite formation around ice giants with the scaling by the mass and the physical radius of a central planet, which is totally different from satellite formation scenarios around terrestrial planets and gas giants. It could also be applied for the inner region of Neptune’s satellite system, where we can neglect the effect of Triton that may have been captured. Observations suggest that many of [the] discovered super-Earths in exoplanetary systems may consist of abundant water ice, even in close-in (warm) orbits. The model here may also give a lot of insights into possible icy satellites of super-Earths.

The paper is Shigeru Ida et al., “Uranian satellite formation by evolution of a water vapour disk generated by a giant impact,” Nature Astronomy 30 March 2020 (abstract / preprint).

tzf_img_post

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives