Centauri Dreams
Imagining and Planning Interstellar Exploration
New Horizons: The Beauty of Hibernation
I’ve always had a great interest in Iceland, stemming from my studies of Old Norse in graduate school, when we homed in on the sagas and immersed ourselves in a language that has changed surprisingly little for a thousand years. There’s much modern vocabulary, of course, but the Icelandic of 1000 AD is much closer to the modern variant than Shakespeare’s English is to our own. Syntactically and morphologically, Icelandic is a survivor, and a fascinating one.
New Horizons’ journey to Kuiper Belt Object MU69 occasions this reverie because the mission team has named the object Ultima Thule, following an online campaign seeking input from the public that produced 34,000 suggestions. The word ‘thule’ seems to derive from Greek, makes it into Latin, and appears in classical documents in association with the most distant northern areas then known. In the medieval era, Ultima Thule is occasionally mentioned in reference to Iceland, and sometimes to Greenland, and may have been applied even to the Shetlands, the Orkneys and, probably, the nearby Faroes. Northern and on the edge, that’s Ultima Thule.
The new Ultima Thule is a natural coinage, as New Horizons’ principal investigator Alan Stern (SwRI) has noted:
“MU69 is humanity’s next Ultima Thule. Our spacecraft is heading beyond the limits of the known worlds, to what will be this mission’s next achievement. Since this will be the farthest exploration of any object in space in history, I like to call our flyby target Ultima, for short, symbolizing this ultimate exploration by NASA and our team.”
Hence the beauty of space exploration. On Earth we eventually reach our Ultima Thule, whichever place we want to assign the name, whereas in space there’s always the next one. And indeed, New Horizons may get the chance to go after another Kuiper Belt Object after MU69. Future explorations will always find more distant targets in the cosmos.
Image: Artist’s impression of NASA’s New Horizons spacecraft encountering 2014 MU69, a Kuiper Belt object that orbits 1.6 billion kilometers beyond Pluto, on Jan. 1, 2019. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben.
Now 6 billion kilometers from Earth, New Horizons has exited hibernation as of 0212 EDT (0612 UTC) on June 5, with all systems in normal operation. We’re now in the process of uploading commands to the computers aboard the spacecraft to begin preparations for the Ultima Thule flyby, including science retrieval and subsystem and science instrument checkouts. Things are heating up — we’re not that far from August, when New Horizons will begin making observations of its target, imagery that will provide information about any needed trajectory adjustments.
But back to that hibernation, which this time around lasted 165 days. New Horizons is now fully ‘awake’ and will remain so until late 2020, when all data from the Ultima Thule encounter should have been sent back to Earth. Hibernation itself was an ingenious innovation that would maximize efficiency by reducing the cost of mission control staffing. After all, a sleeping bird requires only a skeleton crew to maintain basic communications during this period.
The sheer ingenuity of the New Horizons design comes across here. No other NASA mission has attempted hibernation, but the experience of missions like Voyager demonstrated how useful it could be. Voyager required about 450 people to run flight operations, according to David Grinspoon and Alan Stern in Chasing New Horizons. Contrast that with a New Horizons flight staff of fewer than 50 people.
The numbers are striking when you look at how the project team changed after launch as well. In the four years before New Horizons’ 2006 departure, more than 2500 people were involved in building, testing and launching the spacecraft. They included those working on the Radioisotope Thermoelectric Generator (RTG) that converts radioactive decay into electricity, the ground systems necessary to monitor the mission, and of course the rocket that would launch it.
Within a month after launch, all that had changed. “The big city that was New Horizons was reduced to a small town,” write Grinspoon and Stern. As the book memorably states:
During the long years of flight to Pluto, only a skeleton crew of flight controllers and planners, a handful of engineering ‘systems leads,’ the two dozen members of the science team, their instrument engineering staffs, and a small management gaggle was needed. Alan [Stern] recalls, “Just weeks after launch nearly everyone went their own way, and the project was reduced to a little crowd of about fifty belly buttons. All of a sudden I looked around and it hit me: there are just a few of us — a tiny team — and we’re the entire crew that’s going to fly this thing for a decade and 3 billion miles and plan the flyby of a new planet.”
Image: Flight controllers Graeme Keleher and Anisha Hosadurga, of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, monitor New Horizons shortly after confirming the NASA spacecraft had exited hibernation on June 5, 2018. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Mike Buckley.
When New Horizons reached Pluto, 9.5 years had passed since launch, but because of hibernation, most of the craft’s primary systems only had 3.5 years of operational time clocked against them, which means the spacecraft was, for all intents and purposes, years younger than it would otherwise have been. Early hibernation periods tested out the concept not long after launch, easing into a process that soon increased hibernation periods to months at a time.
As New Horizons left its last hibernation period before the Pluto/Charon flyby, Alan Stern chose a ‘wake-up song’ for the occasion, a tradition dating back to Gemini 6 when flight controllers played ‘Hello Dolly’ to wake up astronauts Wally Schirra and Thomas Stafford. Stern chose ‘Faith of the Heart,’ a theme from the TV series Star Trek: Enterprise, with its lyric “It’s been a long road, getting from there to here.” Little did the team know at the time that the ‘heart’ of the title would be echoed by a famous feature on the surface of Pluto itself.
If you haven’t read Chasing New Horizons (Picador, 2018), I can’t recommend it strongly enough. This is the best inside account of a space mission I’ve yet read. Tomorrow I want to dig a little deeper into the book and talk about the New Horizons mission in context as we now begin the exciting process of preparing the craft for yet another encounter.
Lightning in the Jovian Clouds
The longer we can keep a mission going in an exotic place, the better. Sometimes longevity is its own reward, as Curiosity has just reminded us on Mars. After all, it was only because the rover has been in place for six years that it was able to observe what scientists now think are seasonal variations in the methane in Mars’ atmosphere. Thus the news that Juno will remain active in Jupiter space is heartening, and in this case necessary. The mission is now to operate until July of 2021, an additional 41 months in orbit having been approved. More time on station allows Juno to complete a primary science mission that had appeared in jeopardy.
The reason: Problems with helium valves in the spacecraft’s fuel system resulted in the decision to remain in the present 53-day orbit instead of the 14-day ‘science orbit’ originally planned, and that has extended the time needed for data collection. Thus the lengthening of operations there not only allows further time for discovery but essentially enables the spacecraft to achieve its original science objectives. NASA has now funded Juno through FY 2022, allowing for the end of prime operations in 2021 and data collection and mission close-out carrying into 2022.
“This is great news for planetary exploration as well as for the Juno team,” said Scott Bolton, principal investigator of Juno, from the Southwest Research Institute in San Antonio. “These updated plans for Juno will allow it to complete its primary science goals. As a bonus, the larger orbits allow us to further explore the far reaches of the Jovian magnetosphere — the region of space dominated by Jupiter’s magnetic field — including the far magnetotail, the southern magnetosphere, and the magnetospheric boundary region called the magnetopause. We have also found Jupiter’s radiation environment in this orbit to be less extreme than expected, which has been beneficial to not only our spacecraft, but our instruments and the continued quality of science data collected.”
In its present 53-day polar orbit, Juno moves as close as 5,000 kilometers from the Jovian cloud tops and backs out as far as 8 million kilometers. It’s an orbit that minimizes exposure to Jupiter’s radiation belts even as it allows the craft to study the planet’s entire surface over the course of its time there. The latest work on data collected during these orbits comes in two papers, one in Nature, the other in Nature Astronomy, that look at Jovian lightning and how it is produced.
The first analysis draws on data from Juno’s Microwave Radiometer Instrument (MWR), which can record emissions at a wide range of frequencies. Because lightning discharges emit radio waves, Juno can keep an eye on lightning activity on the gas giant. Jovian lightning has also been detected by optical cameras aboard spacecraft as localized flashes of light. Shannon Brown (JPL), lead author of the paper on this work, points out that until Juno, the radio signals spacecraft have detected all came from the Galileo probe, Cassini and the two Voyager flybys, but these were all found in the kilohertz range of the radio spectrum, despite attempts to find signals in the megahertz range. The reason for the discrepancy has been a mystery.
After all, terrestrial lightning emits a broad signal over the radio spectrum up to gigahertz frequencies. Juno is helping to resolve the discrepancy, detecting Jovian lightning ‘sferics’ (broadband electromagnetic impulses) at 600 MHz. That implies that the planet’s lightning discharges are not fundamentally distinct from the lightning we experience on Earth. During Juno’s first eight orbits of Jupiter, the spacecraft detected 377 sferics, finding them prevalent in the polar regions and absent near the equator, with the most frequent occurring in the northern hemisphere at latitudes higher than 40 degrees north.
“We think the reason we are the only ones who can see it is because Juno is flying closer to the lighting than ever before,” says Brown, “and we are searching at a radio frequency that passes easily through Jupiter’s ionosphere.”
But what would account for the fact that Earth’s lightning activity is highest near the equator, while Jupiter’s is most frequent in the polar regions? Brown and company suggest that Jupiter’s poles allow more warm air to rise from within because there is less upper-level warmth from sunlight. Possibly the heating from sunlight at Jupiter’s equator can stabilize the upper atmosphere to inhibit warm air rising from below as it does at the poles. If this is the case, we would expect the polar regions to experience the convective forces that lead to lightning.
From the paper’s abstract:
Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.
Image: This artist’s concept of lightning distribution in Jupiter’s northern hemisphere incorporates a JunoCam image with artistic embellishments. Data from NASA’s Juno mission indicates that most of the lightning activity on Jupiter is near its poles. Credit: NASA/JPL-Caltech/SwRI/JunoCam.
What scientists now have to explain, as this JPL news release points out, is why the north pole is so much more active than the south. Our understanding of energy flow and circulation on Jupiter is clearly a work in progress, something the Juno data trove may help us untangle. Meanwhile, Ivana Kolmašová (Czech Academy of Sciences, Prague) and colleagues have offered what NASA is calling ‘the largest database of lightning-generated low-frequency radio emissions around Jupiter (whistlers) to date.’ The dataset includes more than 1600 signals collected by Juno’s Waves instrument, 10 times the number recorded by Voyager 1.
We’re not only further along in detection technology than in the Voyager days, with advances in microwave and plasma wave instruments to sense lightning amidst Jupiter’s emissions, but we’re also dealing with a spacecraft that has come closer to Jupiter than any other craft in history, allowing a vast increase in signal strength. The knowledge that Juno will now be able to proceed through its entire primary data collection mission is thus a cause for celebration.
The papers are Brown et al., “Prevalent lightning sferics at 600 megahertz near Jupiter’s poles,” Nature 558 (2018), 87-90 (abstract); and Kolmašová et al., “Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth,” Nature Astronomy 6 June 2018 (abstract).
Scouting Alpha Centauri at X-ray Wavelengths
One of the benefits of having Alpha Centauri as our closest stellar neighbor is that this system comprises three different kinds of star. We have the familiar Centauri A, a G-class star much like our Sun, along with the smaller Centauri B, a K-class star with about 90 percent of the Sun’s mass. Proxima Centauri gives us an M-dwarf, along with the (so far) only known planet in the system, Proxima b. Questions of habitability here are numerous. Along with possible tidal locking, another major issue is radiation, since M-dwarfs are known for their flare activity.
As we learn more about the entire Alpha Centauri system, though, we’re learning that the two primary stars are much more clement. They may have issues of their own — in particular, although stable orbits can be found around both Centauri A and B, we still don’t know whether planets are likely to have formed there — but scientists studying data from the Chandra X-ray Observatory have found that levels of X-ray radiation are far lower here than around Proxima Centauri.
This is good news, because high radiation levels could prove fatal for surface life, with the additional effect of possible damage to planetary atmospheres. Chandra has been involved in a multi-year campaign targeting Centauri A and B stretching back to 2005, with observations every six months. No other X-ray observatory is capable of resolving the two primary stars during their current close orbital approach. What we wind up with is a look at radiation activity over time, covering a period analogous to our own Sun’s 11-year sunspot cycle.
Image: A new study involving long-term monitoring of Alpha Centauri by NASA’s Chandra X-ray Observatory indicates that any planets orbiting the two brightest stars are likely not being pummeled by large amounts of X-ray radiation from their host stars. This is important for the viability of life in the nearest star system outside the Solar System. Chandra data from May 2nd, 2017 are seen in the pull-out, which is shown in context of a visible-light image taken from the ground of the Alpha Centauri system and its surroundings. Credit: X-ray: NASA/CXC/University of Colorado/T.Ayres; Optical: Zden?k Bardon/ESO.
Tom Ayres (University of Colorado Boulder) presented these results at the just concluded meeting of the American Astronomical Society in Denver. Any planets in the habitable zone of Centauri A would actually receive a lower dose of X-rays, on average, than planets around the Sun, while the X-ray dosage for a planetary companion of Centauri B is about 5 times higher than the Sun. This contrasts sharply with Proxima Centauri’s planet, which would receive an average dosage 500 times larger than the Earth, rising to 50,000 times higher during a major flare. If we find planets around either A or B, it may be that Breakthrough Starshot will want to prioritize these at the expense of the more endangered Proxima b.
In the animation below, we can see the proper motion of Centauri A and B.
Image: This movie shows Chandra observations of Alpha Centauri A and B taken about every 6 months between 2005 and 2018. Alpha Cen A is the star to the upper left. The motion of the pair from left to right is their “proper motion”, showing the movement of the pair in our galaxy with respect to the solar system. The change in relative positions of the pair shows the motion in their 80 year long orbit and the wobbles show the small apparent motion (called parallax) caused by the year long orbit of the Earth around the Sun. The Chandra images are shown in black and white. To place these semi-annual images in context, the two colored circles show the expected motion of Alpha Cen A (yellow) and Alpha Cen B (orange) when taking account of proper motion, orbital motion and parallax. The size of the circles is proportional to the X-ray brightness of the source. Credit: Thomas Ayres.
Ayres has also written up some of the results in Research Notes of the American Astronomical Society, where I learned that the central AB pair has actually been under X-ray study for almost four decades, dating back to the late 1970s and the HEAO-2 satellite (also known as the Einstein Observatory), which was the first fully imaging X-ray telescope ever put into space. Subsequent observations were conducted by ROSAT (Röntgen-Satellit), XMM-Newton and now Chandra. Here, Ayres explains why X-ray studies may help us learn about habitability in this system as well as giving us information closer to home:
The modest coronae (106 K) of ? Cen AB are on par with our own Sun’s. X-ray studies of these objects can help us understand how the “Dynamo” in the stellar interior produces the episodic surface magnetic eruptions at the core of solar activity and “Space Weather.” The hard radiation and particle bombardment from flares and coronal mass ejections can affect Planet Earth, so the interest is not solely academic. Exoplanets of other sunlike stars can be exposed to analogous extreme high-energy transients from their hosts, with perhaps serious repercussions for habitability.
Image: Figure 1 from the Ayres note. Caption: X-ray light curves of a Cen AB and the Sun 1995–2018. Credit: T. R. Ayres.
I was fortunate enough to be in the audience when Ayres spoke to Breakthrough Discuss in 2016 in a presentation called “The Ups and Downs of Alpha Centauri.” Here’s Breakthrough’s video of that talk, which I highly recommend.
The research note is Ayres, “Alpha Centauri Beyond the Crossroads,” Research Notes of the AAS Vol. 2, No. 1 (22 January 2018). Full text.
How Old Are Globular Clusters?
Some 150 globular clusters are associated with the Milky Way, great collections of stars inhabiting the galactic halo. Their stars have long been assumed to be ancient, making the question of life there intriguing: If life caught hold in these tightly packed clusters early in the universe’s evolution, could ancient civilizations have formed that might persist even today? I know of only one planet that has yet been found in a globular cluster, but we’re obviously early in the game, and planets have been discovered in open clusters, which are much less densely packed.
Just how little we know about globular clusters, though, is made apparent by the work of Elizabeth Stanway (University of Warwick), whose new paper argues that such clusters could be billions of years younger than we have thought. Working with JJ Eldridge (University of Auckland), Stanway invokes a model called Binary Population and Spectral Synthesis (BPASS). In play here is the evolution of binary stars within globular clusters, a line of research that has been put to work in prior studies of young stellar populations in the Milky Way and elsewhere.
Image: The globular cluster Terzan 1. Clusters like these have been thought to contain some of the oldest known stars. New research puts their age into question. Credit: Judy Schmidt/ESA/NASA.
A significant problem in observing globular clusters is described in the paper. Having discussed using the spatially resolved light of individual stars to determine stellar properties, the authors note:
However, in the majority of old stellar populations, such detailed investigation of resolved stellar properties is impossible due to a lack of depth or angular resolution, and the integrated light of the unresolved stars must instead be used to constrain the properties of the population as a whole. In this scenario observable characteristics of the source spectral energy distribution (SED), including photometric colours and spectroscopic emission lines or indices, are compared to those determined for models of known age and composition.
And here’s the crux, which is why the age of such significant galactic features as these remains in doubt:
Either a best fitting template or a relation calibrated on such templates is then used to characterise the population. As a result, such analyses are strongly dependent on the properties of the template stellar population models.
Out of this understanding has sprung a new generation of models for the study of galactic evolution. But as the authors point out, binary interactions can have marked effects on a star’s development, and current research indicates that multiple star systems are ubiquitous in globular clusters, making single star models problematic when conclusions are being drawn from the integrated light of the entire cluster. And it turns out that the model populations that best fit observations are substantially younger than those derived from older spectral models.
Thus the utility of BPASS, which the authors have upgraded from a version described in an earlier paper. The BPASS upgrade is targeted at refining age estimates for older populations of stars. The researchers examine the elements in the spectra of binary stars, looking at systems where the larger star expands into a giant while the smaller star strips away its atmosphere. In this model, both stars are assumed to have formed at the same time as the globular cluster.
From the paper:
…incorporating binary stellar evolution pathways, together with the most up-to-date stellar evolution and atmosphere models for single stars, into stellar population synthesis models can make a significant difference in the interpretation of their integrated light properties. The lifetimes of stars in different mass ranges can be modified, by mass transfer and mixing, as can their temperatures and gravities. Mass transfer onto a secondary can produce more massive, and therefore brighter, stars at late ages, even if their stellar atmospheres are typical of cool red giants. A population can also incorporate stellar types simply not found in the absence of binary evolution.
?Image: Binary star evolution within a globular cluster. Credit & copyright: Mark A. Garlick/University of Warwick.
Given the dependence of the age estimates of older star populations on evolutionary models, it’s helpful to see that the BPASS work can reproduce observed values in globular clusters and galaxies. And as the model is continuing to be refined, it produces this result:
Model fits to photometry and spectroscopic indices yield a consistently younger fit, often at slightly higher metallicity, than fits to older calibrations, when new stellar atmosphere models and binary stellar evolution pathways are included.
And this:
At its most basic level, this means that we are able to reproduce the photometry of mature, quiescent galaxies and clusters at younger ages than previous model sets (i.e. ? 5 ? 8 Gyr, rather than 10-14 Gyr).
Stellar interactions, then, may tell the tale, perhaps adjusting our estimates of cluster age by billions of years. Still ancient, these vast ‘cities of stars’ pose huge questions — how stable are planetary orbits, for example, given the interactions between such tightly packed stars? But the vision of places like Lagash, the planet in Isaac Asimov’s “Nightfall” (called Kalgash in the later novel), its skies always ablaze with stars, keeps the science fiction fan in me speculating. What would it be like to be on a planet deep within something as splendid as the image below?
Image: Thousands and thousands of brilliant stars make up this globular cluster, Messier 53, captured with crystal clarity in this image from the NASA/ESA Hubble Space Telescope. Bound tightly by gravity, the cluster is roughly spherical and becomes denser towards its heart. These enormous sparkling spheres are by no means rare, and over 150 exist in the Milky Way alone, including Messier 53. It lies on the outer edges of the galaxy, where many other globular clusters are found, almost equally distant from both the centre of our galaxy and the Sun. Although they are relatively common, the famous astronomer William Herschel, not at all known for his poetic nature, once described a globular cluster as “one of the most beautiful objects I remember to have seen in the heavens.” This picture was put together from visible and infrared exposures taken with the Wide Field Channel of Hubble’s Advanced Camera for Surveys.
Our understanding of globular clusters is, of course, a work in progress. Says Stanway:.
“It’s important to note that there is still a lot of work to do – in particular looking at those very nearby systems where we can resolve individual stars rather than just considering the integrated light of a cluster – but this is an interesting and intriguing result. If true, it changes our picture of the early stages of galaxy evolution and where the stars that have ended up in today’s massive galaxies, such as the Milky Way, may have formed. We aim to follow up this research in future, exploring both improvements in modelling and the observable predictions which arise from them.”
The paper is Stanway & Eldridge, “Reevaluating Old Stellar Populations,” in press at Monthly Notices of the Royal Astronomical Society (preprint).
A Gravitational Explanation for ‘Detached Objects’
Things always get interesting when the American Astronomical Society meets, which it is now doing in Denver, in sessions that will run until June 7. There should be no shortage of topics emerging from the meeting, but the first that caught my eye was a different approach to the putative world some are calling Planet Nine. Teasing out the existence of a planet at the outer edges of the Solar System has involved looking at gravitational interactions among objects that we do know about, and extrapolating the presence of a far more massive body.
But the methodology may be flawed, if new work from Ann-Marie Madigan and colleagues at the University of Colorado Boulder is correct. At a press briefing at the AAS meeting, the team presented its view that objects like Sedna, an outlier that takes more than 11,000 years to complete an orbit around the Sun, should be considered in relation to other so-called ‘detached bodies.’ Almost 13 billion kilometers out, Sedna is one of a collection of such objects that appear in some ways to be in another category from the more conventional inner worlds.
Image: An artist’s rendering of Sedna, which looks reddish in color in telescope images. Credit: NASA/JPL-Caltech.
Sedna and its ilk come nowhere near the larger planets of our system, and their orbits may tell a tale. As this CU-Boulder news release explains, it was an undergraduate student named Jacob Fleisig who began to model a significant pattern known as ‘inclination instability’ that Madigan had previously described in the literature. Fleisig’s computer modeling illustrates how inclination instability can ease Sedna’s orbit from oval to circular over time.
In the model, accumulating gravitational forces drive growth in the orbital inclinations of objects in eccentric orbits. From the new work:
…secular (orbit-averaged) gravitational torques between orbits in the disk drive exponential growth of their inclinations. As the orbits’ inclinations grow, they tilt in the same way with respect to the disk plane. This leads to clustering in their angles of pericenter and the initially thin disk expands into a cone shape. Concurrently, the orbital eccentricities decrease and perihelion distances increase.
If such a mechanism is at work in our own system, we would expect it to occur between minor planets originally scattered to large orbital eccentricities via interactions with the giant planets. Such objects then become gravitationally detached from those planets. The authors believe this mechanism can explain the orbits of high perihelia objects like Sedna. Current studies posit anywhere from 1 to 10 Earth masses of cometary material existing at hundreds of AU from the Sun. The authors see such objects being originally scattered by the giant planets and their orbits decoupled by perturbations from cluster gas and nearby stars.
Perhaps this is all we need to explain the orbits of detached objects. There would be no need for a ‘Planet Nine’ at the edge of the Solar System. Instead, the detached objects achieve their present orbits through a series of small-scale interactions.
“There are so many of these bodies out there. What does their collective gravity do?” asks Madigan. “We can solve a lot of these problems by just taking into account that question.”
A great deal of work is ahead as the authors apply findings from their current computer simulations — “focused on the linear phase of the inclination instability in an idealized set-up” — to the outer Solar System. The paper notes their intent to model the gravitational influences of the giant planets and to focus on individual minor planets — especially those whose orbits become retrograde — instead of averaging their results for many hypothetical objects.
The paper is Madigan et al., “On the Dynamics of the Inclination Instability,” submitted to The Astrophysical Journal (preprint).
Breakthrough Starshot Sail RFP
Breakthrough Starshot held an ‘industry day’ on Wednesday May 23rd devoted to its lightsail project to take nanocraft to another star, framing the release of a Request for Proposals during its early concepts and analysis phase. The RFP focuses on the sail itself, investigating sail materials and stability under thrust. Step A proposals are due June 22, step B proposals on July 10, with finalists to be notified and contracts awarded this summer. The intent of the RFP is laid out in documents and slides from the meeting that Breakthrough has now placed online.
From the RFP itself:
The scope of this RFP addresses the Technology Development phase – to explore LightSail concepts, materials, fabrication and measurement methods, with accompanying analysis and simulation that creates advances toward a viable path to a scalable and ultimately deployable LightSail.
We’ve been talking about Breakthrough Starshot in these pages for a long time, as a search through the archives will reveal. The intention is to send gram-scale probes commonly referred to as ‘starchips’ attached to sails on the scale of meters to a nearby star to investigate its planets, with the highly interesting Proxima Centauri b an obvious target given that it is also the closest star to the Sun. Propelling the sail will be a gigawatt-scale ground-based laser. 20 years of flight time sets up the flyby, with data transmission returning images of the star system.
$100 million in research and development is to be spent over the next 5 years to determine the feasibility of both laser and sail. Overall, the five-year technology development period will be managed by three groups: Starshot’s sail committee, a photon engine committee and a systems engineering committee. After that, the goal from years 6 to 11 is to build a low-power prototype for space testing. After that comes a full scale laser system (called the ‘photon engine’) over the next 20 years, with launch of an interstellar mission occurring in approximately 30 years.
It’s an ambitious schedule, to be sure, but the early conceptual steps are now being taken, with initial sail work investigating candidate materials and sail stability. Keeping a sail stable under the high accelerations induced by the laser array is obviously critical and has already involved discussions and papers on different sail configurations, while the equally critical issue of sail materials is likewise considered in the RFP, which is Phase 1 of the sail’s development.
Phase 2 of the technology development program for the lightsail will validate lightsail materials and stable designs by proof of concept laboratory demonstrations, while Phase 3 takes us into laboratory testing of scalable prototypes. All of this points toward the eventual goal of a prototype mission that would launch nanocraft to a target here in the Solar System.
With this RFP focusing on Phase 1, Breakthrough Starshot seeks proposals for quantitative models that can produce testable predictions of sail performance, mathematical models defining the necessary conditions for sail stability, experimental methods for lightsail material fabrication and precision measurements to ‘validate optical, thermal and mechanical stability of materials.’ Here is the RFP statement of key issues involved in identifying candidate materials and designs:
- Design of a reflector consistent with the mission requirement of achieving 0.2c for ~1g payload and LightSail area of >1 m2
- Design of passive, adaptive or active features that enable or enhance stability, damage resistance, thermal robustness, and durability under deformation
- Assessment of candidate materials (including thin-films, micro/nanopatterned structures, 2D materials) for thermal/mechanical stability
- Development of measurement techniques and protocols for LightSail material properties (absorption, reflectivity, temperature, stress state, etc.)
- Identification of materials for which scale-up and manufacture at the >1 m2 scale is feasible
- Materials that facilitate integration of the LightSail with the Starchip
- Development of the next generation Starchip scale spacecraft with a path towards incorporation into the Nanocraft
The second objective of the RFP is to identify and assess optimally-shaped designs for a stable sail that can withstand the temperatures and accelerations involved in pushing nanoncraft to 20 percent of the speed of light in a matter of minutes. The RFP notes the key issues here as:
- Validation via, e.g., multi-physics simulation (optical, mechanical, thermal, etc.) of LightSail durability and dynamic stability and sensitivity to Photon Engine laser propulsion beam geometry and ground demonstrations
- Evaluation of spacecraft stability in the context of a LightSail integrated with a Starchip payload
- Development of optimization-based tools for evaluating LightSail designs matched to corresponding laser beam profiles.
- Defining a roadmap for test and verification, including:
o Measurement techniques for thin membranes at a small (<1 cm2) scale
o Developing diagnostics and instrumentation needed for LightSail stability
measurements
You can download the RFP from the Breakthrough Starshot site for bidding information; note that multiple awards are anticipated. A layout of the proposal process and requirements is provided there, with submission information. The procurement is a two-step process with initial (short) white paper proposal evaluated by the Starshot lightsail committee and experts in beamed propulsion, and a second round in which finalists are invited to make final proposals. Contract negotiations will then be performed by the Starshot lightsail committee.