Centauri Dreams
Imagining and Planning Interstellar Exploration
New Insights into Long-Period Comets
The Voyagers’ continuing interstellar mission reminds us of how little we know about space just outside our own Solar System. We need to learn a great deal more about the interstellar medium before we venture to send fast spacecraft to other stars. And indeed, part of Breakthrough Starshot’s feasibility check re small payloads and sails will be to assess the medium and determine what losses are acceptable for a fleet of such vehicles.
The definitive work on the matter is Bruce Draine’s Physics of the Interstellar and Intergalactic Medium, and thus it’s no surprise that Draine has been involved as a consultant with Starshot. As we saw yesterday, we have only one spacecraft returning data from outside the heliosphere (soon to be joined by Voyager 2), making further precursor missions explicitly designed to study ‘local’ gas and dust conditions a necessity.
Another reminder of the gaps in our knowledge comes from an analysis of WISE data. The Wide-field Infrared Survey Explorer satellite has given us a look at objects perturbed in some fashion within the Oort Cloud and now making occasional forays into nearby space. A distribution of comets and other icy bodies beginning some 300 billion kilometers from the Sun and extending outwards perhaps as far as 200,000 AU, the Oort Cloud’s extent makes it possible that it may extend into similar clouds of icy material around the Alpha Centauri stars.
Image: The fact that this image is logarithmic gives a startlingly clear idea of the extent of the Oort Cloud. The scale bar is in astronomical units, with each set distance beyond 1 AU representing 10 times the previous distance. One AU is the distance from the sun to the Earth, which is about 150 million kilometers. At the outer edge of the Oort Cloud, the gravity of other stars begins to dominate that of the sun. The inner edge of the main part of the Oort Cloud could be as close as 1,000 AU. Voyager 1, our most distant spacecraft, is around 125 AU. It will take about 300 years for Voyager 1 to reach the inner edge of the Oort Cloud and possibly about 30,000 years to fly beyond it. Credit: NASA / JPL-Caltech.
There turns out to be more of such material than we had thought. The outer Oort Cloud is only loosely bound, meaning that gravitational interactions with passing stars or ‘rogue’ planets, not to mention effects from the Milky Way itself, can dislodge comets from their orbits and bring them into the inner system. Such comets may have periods not just in the hundreds but millions of years. The WISE data were gathered during the spacecraft’s primary mission, before its recommissioning as NEOWISE, with the charter of studying near-Earth objects.
Measuring the size of long-period comets is difficult because the cloud of gas and dust around the comet — its coma — makes it difficult to measure the actual cometary nucleus. WISE was able to get around this problem by probing comets in the infrared, subtracting the glow of the coma from the signature of the nucleus. 2010 WISE observations of 95 Jupiter family comets — with periods of 20 years or less — and 56 long-period comets were used in the study.
The result: Comets that move regularly into the inner system are found to be, on average, as much as four times smaller than long-period comets, those moving only rarely near the Sun. Moreover, there are seven times more long-period comets in the size range of one kilometer in diameter and above than had previously been thought. In the eight months of the study period, three to five times more long-period comets were observed moving in the vicinity of the Sun than had been predicted.
“The number of comets speaks to the amount of material left over from the solar system’s formation,” said James Bauer, lead author of the study and now a research professor at the University of Maryland, College Park. “We now know that there are more relatively large chunks of ancient material coming from the Oort Cloud than we thought.”
Image: This illustration shows how scientists used data from NASA’s WISE spacecraft to determine the nucleus sizes of comets. They subtracted a model of how dust and gas behave in comets in order to obtain the core size. Credit: NASA/JPL-Caltech.
The results presumably reflect the fact that, coming closer to the Sun on a much more frequent basis, Jupiter-class short-period comets lose volatiles through sublimation, along with surface materials. An observed clustering in the orbits of long-period comets also suggests that many of these could have been part of larger bodies at some point in the past. The findings may have a bearing on our estimates of water delivery to the early Earth.
Co-author Amy Mainzer (JPL), principal investigator of the NEOWISE mission, points out that, traveling much faster than asteroids, long-period comets like these, many of them quite large, have to be factored into our analyses of impact risk. We’re developing an extensive catalog of near-Earth objects, but a long-period comet dislodged from the Oort Cloud, moving faster than any near-Earth asteroid, poses a risk that is badly in need of assessment.
The paper is Bauer et al., “Debiasing the NEOWISE Cryogenic Mission Comet Populations,” Astronomical Journal Volume 154, Number 2 (14 July 2017) (abstract). This NASA news release is also helpful.
Go Voyager
It’s worth thinking about why Voyager 1 and 2, now coming up on their 40th year of operation, are still sending back data. After all, mission longevity becomes increasingly important as we anticipate missions well outside the Solar System, and the Voyagers are giving us a glimpse of what can be done even with 1970’s technology. We owe much of their staying power to their encounters with Jupiter, which demanded substantial protection against the giant planet’s harsh radiation, a design margin still used in space missions today.
The Voyagers were the first spacecraft to be protected against external electrostatic charges and the first with autonomous fault protection, meaning each spacecraft had the ability to detect problems onboard and correct them. We still use the Reed-Solomon code for spacecraft data to reduce data transmission errors, and we all benefited from Voyager’s programmable attitude and pointing capabilities during its planetary encounters.
Pioneer 6 was a doughty vehicle, but Voyager 2 (launched before Voyager 1) passed its record as longest continuously operating spacecraft back in August of 2012, while Voyager 1 eclipsed Pioneer 10’s distance mark in 1998 and is now traveling some 21 billion kilometers out. Voyager 1 is our sole spacecraft to leave the heliosphere, though Voyager 2 is expected to follow it in a few years, and we’ve already acquired important information, such as the fact that cosmic rays are four times more abundant in interstellar space than near the Earth.
You can see how all this begins to build the foundation for a ‘true’ interstellar mission, by which I mean one designed solely for the purpose of penetrating the local interstellar medium and reporting data from it. The heliosphere, Voyager has shown us, wraps around our Solar System and helps to provide a radiation shield for the planets. Missions both robotic and manned will need to be designed around the cosmic ray issues Voyager has uncovered.
Image: Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers. Credit: NASA/JPL/USGS.
Still thinking interstellar, the Voyagers are telling us about the solar wind’s termination shock, that region where charged particles from the Sun slow to below the speed of sound as they push out into the interstellar medium — these are Voyager 2 measurements. Voyager 1 has measured the density of the interstellar medium as well as magnetic fields outside the heliosphere. The final benefit: We’ll have Voyager 2 outside the heliosphere while still in communication, so we can sample the interstellar medium from two different locations.
I always think of long spacecraft missions in terms of the people who work on them. Voyager is pushing on the ‘lifetime of a researcher’ rubric that some consider essential (though I disagree), the notion that missions have to be flown so that those who worked on them can see them through to destination. But of course the Voyagers have no destination as such; they’ll press on in a galactic orbit that takes fully 225 million years to complete. And as our spacecraft get even more rugged and capable of autonomy, we’ll soon take it as a given that multiple generations will be involved in seeing any complex mission through to completion. (See Voyager to a Star for my riff on a symbolic ‘extension’ to the Voyager mission).
Image: These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. The spacecraft was 9.1 million kilometers from the planet, several days from closest approach. The picture at left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. Credit: NASA/JPL.
We have, according to the Jet Propulsion Laboratory, perhaps until 2030 before data from the Voyagers ceases. Each spacecraft contains three radioisotope thermoelectric generators (RTGs) running off the decay of plutonium-238. And as this JPL news release reminds us, with the spacecraft power decreasing by four watts per year, engineers have to be creative at figuring out how best to squeeze out data results under extreme power constraints.
For a mission this long, that means consulting documents written decades ago and at a completely different stage of technological development.
“The technology is many generations old, and it takes someone with 1970s design experience to understand how the spacecraft operate and what updates can be made to permit them to continue operating today and into the future,” said Suzanne Dodd, Voyager project manager based at NASA’s Jet Propulsion Laboratory in Pasadena.
Image: Global color mosaic of Triton, taken in 1989 by Voyager 2 during its flyby of the Neptune system. Triton is one of only three objects in the Solar System known to have a nitrogen-dominated atmosphere (the others are Earth and Saturn’s giant moon, Titan). The greenish areas include what is called the cantaloupe terrain, whose origin is unknown, and a set of “cryovolcanic” landscapes apparently produced by icy-cold liquids (now frozen) erupting from Triton’s interior. Credit: NASA/JPL/USGS.
It’s been quite a ride. Voyager discovered Io’s volcanoes and imaged rings around Jupiter, Uranus and Neptune, while finding hints of the apparent ocean within Europa that carries so much astrobiological interest. Between them, the Voyagers found a total of 24 new moons amongst the four planets they visited, detecting lightning on Jupiter and a nitrogen-rich atmosphere at Titan, the first to be found outside the Earth itself. And who can forget that bizarre terrain on Triton, or the tortured surface of Uranus’ moon Miranda?
“None of us knew, when we launched 40 years ago, that anything would still be working, and continuing on this pioneering journey,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California. “The most exciting thing they find in the next five years is likely to be something that we didn’t know was out there to be discovered.”
Image: The Voyagers outbound. A representation of the heliosphere, including the termination shock (TS), the heliopause and the interstellar medium where the heliosphere ends. Credit: Science, NASA/JPL-California Institute of Technology. Note: In this image, the locations of the Voyagers are updated only to September 2011, by Brad Baxley, JILA.
Who knew that Voyager’s measurements of solar wind plasma, low-frequency radio waves, charged particles and magnetic fields would still be informing us fully forty years on? The next spacecraft to cross the heliosphere after Voyager, this time designed for just that purpose, will surely live even longer, challenging our conceptions of human achievement across generations and our willingness to tackle projects involving not just deep space but deep time.
This mission isn’t over. Go Voyager.
Exomoons: Rare in Inner Stellar Systems?
Exomoons — moons around planets in other star systems — are an exhilarating and at the same time seemingly inevitable prospect. There is little reason to assume our Solar System is unique in its menagerie of moons, with the gas giants favoring us particularly with interesting mission targets, and then there’s that fascinating double system at Pluto/Charon. If we visualize what we expect to find in any given stellar system, surely moons are part of the mix, and investigations like the Hunt for Exomoons with Kepler will doubtless find them.
An actual exomoon detection would be a triumph for exoplanet science, especially given how recently it was that we nailed down the first confirmed exoplanet, 51 Pegasi b, in 1995 (or, if you prefer, the 1992 detection of terrestrial-mass planets orbiting the pulsar PSR B1257+12). We’re new at this, and what huge strides we’ve made! Given the small size of the transit signal and its changing relation to the body it orbits, exomoons offer a particularly difficult challenge, although David Kipping’s team at HEK has plenty of Kepler data to work with.
Image: A star with a transiting planet and its moon. The angled area shows the inclination of the moon orbit. Orbit positions beyond the dashed line are not undergoing transit, and are thus not observable. Credit: Michael Hippke.
With all this in mind, every paper that comes out of HEK gets my attention. Kipping (Columbia University), working with graduate student Alex Teachey and citizen scientist Allan Schmitt, has now produced a paper that takes a significant step as the investigation proceeds. We have no detection yet — more about that in a moment — but we do have a broader result showing that exomoons are unusual in the inner regions of the systems surveyed.
Kipping and Teachey looked at 284 viable moon-hosting Kepler planetary candidates to search for moons around planets from Earth to Jupiter in size and distances from their stars of 0.1 to 1 AU. This finding seems to be getting less attention in the press than it deserves, so let’s dig into the paper on it:
Our results place new upper limits on the exomoon population for planets orbiting within about 1 AU of their host star, upper limits that are remarkably low. We have also analyzed subsets of the ensemble to test the effect of various data cuts, and we have identified the regime in which the OSE model presented in Heller (2014) breaks down, which we call the “Callisto Effect” — beyond 20 planetary radii, discrepancies appear in the results.
OSE stands for Orbital Sampling Effect, developed by René Heller in 2014 and described by Michael Hippke in Exomoons: A Data Search for the Orbital Sampling Effect and the Scatter Peak. OSE stacks multiple planet transits to search for an exomoon signature. What the paper is referring to as the ‘Callisto effect’ is the disagreement between OSE predictions and moons like Callisto. Even so, the authors continue to see OSE as a useful tool, and learning about an area in which it breaks down is helpful as we fine-tune our capabilities.
Back to the paper:
Our analysis suggests that exomoons may be quite rare around planets at small semi-major axes, a finding that supports theoretical work suggesting moons may be lost as planets migrate inward. On the other hand, if the dearth of exomoons can be read as a reliable indicator of migration, our results suggest a large fraction of the planets in the ensemble have migrated to their present location.
And that is a pointer to which we need to pay attention. Is a lack of exomoons a marker for planetary migration? If further analysis determines that it is, then we’ve found an extremely handy tool for studying the formation history of other stellar systems.
The Kepler data did yield one exomoon candidate in the Kepler-1625 system for which the authors have set up plans for follow-up observations with Hubble this fall. There is no way to know at this point whether we’ve got a genuine exomoon here or not. And I much appreciate the thorough job that Alex Teachey did in getting this point across to the public in his article Are Astronomers on the Verge of Finding an Exomoon? We learn here that the authors put their paper online earlier than intended because a media outlet was going to publish news about the upcoming Hubble study (Hubble proposals are publicly posted online).
And Teachey’s point is sound at a time when ideas whip around the Internet at lightspeed:
Peer review is a critical part of the scientific process, and we are not terribly comfortable putting out our results before they have been examined by a qualified referee. Unfortunately, we feel the circumstances have forced us to make our results freely available to the public before such a review, so that everyone may see for themselves what we are claiming and what we are not. While David and I are both big proponents of engaging with the public and boosting interest in the incredible things happening every day in astronomy, we have serious concerns about the potential for sensational headlines misleading the public into thinking a discovery has been made when it is really too early to say that for sure.
It’s a solid point. But I also want to emphasize that this paper’s findings about the apparent rarity of exomoons in the inner systems of the stars being studied is quite significant. To my knowledge this is the first time we’ve developed a constraint on exomoon formation. We doubless have moons hiding in the data (recall that the authors are looking for analogs to the Galilean moons of Jupiter), and we can also suspect they are going to be much more common in outer stellar systems, which is certainly the case in our own Solar System.
Don’t expect an immediate result from the Hubble observations. According to this article in Nature, Kipping and team will take about six months to analyze the work before making any announcements. Steady, painstaking effort is how this job gets done.
The paper is Teachey, Kipping & Schmitt, “HEK VI: On the Dearth of Galilean Analogs in Kepler and the Exomoon Candidate Kepler-1625b I,” submitted to AAS journals and available as a preprint. For helpful background, check Kipping, “The Transits of Extrasolar Planets with Moons,” PhD thesis, University College London (March 14, 2011), available online.
Stagnant Supercivilizations and Interstellar Travel
Just how long can a civilization live? It’s a key question, showing up as a factor in the Drake Equation and possibly explaining our lack of success at finding evidence for ETI. But as Andrei Kardashev believed, it is possible that civilizations can live for aeons, curbed only by the resources available to them, opening up the question of how they evolve. In today’s essay, Nick Nielsen looks at long-lived societies, asking whether they would tend toward stasis — Clarke’s The City and the Stars comes to mind — and how the capability of interstellar flight plays into their choices for growth. Would we be aware of them if they were out there? Have a look at supercivilizations, their possible trajectories of development, and consider what such interstellar stagnation might look like to a young and questing species searching for answers.
by J. N. Nielsen
What are stagnant supercivilizations?
As far as I know there are no precise definitions of supercivilizations, but this should not surprise us as there are no precise definitions of civilization simpliciter. In his paper, “On the Inevitability and the Possible Structures of Supercivilizations” (1985), Nikolai S. Kardashev explicitly formulated two assumptions regarding supercivilizations:
“I. The scales of activity of any civilization are restricted only by natural and scientific factors. This assertion implies that all processes observed in Nature (from phenomena in the microcosmos to those in the macrocosmos and all the way to the whole Universe) may in time be utilized by civilizations, be reproduced or even somewhat changed, though of course always in accordance with the laws of Nature.
“II. Civilizations have no inner, inherent limitations on the scales of their activities. This implies that presumptions of a possible self destruction of a civilization, or of a certain restrictions on the level of its development are not factual. Actually social conflicts may in fact be resolved, while civilizations will always face problems that demand larger scales of activity.” [1]
If Kardashev was right, there being only natural and scientific restrictions on the scale of the activity of civilization, and the absence of inherent limitations on civilizations, would mean that an expanding civilization would just keep expanding, subject only to natural laws like those of general relativity and quantum theory, thermodynamics and conservation laws. Presumably, then, older expanding civilizations would eventually become supercivilizations in virtue of the scale of their activities, which would grow proportionally (or perhaps exponentially) to their age. Here we see the relationship between supercivilizations and the recurrent motif of million-year-old or even billion-year-old civilizations. But once grown to these dimensions, what then?
In a series of posts — Stagnant Supercivilizations, An Alternative Formulation of Stagnant Supercivilizations, Suboptimal Civilizations, Supercivilizations and Superstagnation, and What Do Stagnant Supercivilizations Do During Their Million Year Lifespans? — I discussed Kardashevian supercivilizations that have become stagnant—in other words, civilizations that are very old, very large, very powerful, and very advanced, but which have attained a plateau of achievement and thus have ceased to develop. Such civilizations, in a growth phase, may have taken advantage of the absence of any inherent limitation upon the scale of their activities and would have grown to utilize all the processes of nature, subject only to the laws of nature. Their growth trajectory would have described an S-curve, much like a species that converges upon the carrying capacity of its ecosystem. Having reached an equilibrium with its environment—which, in the case of a supercivilization, is the cosmos itself—the growth of a supercivilization would then be limited by galactic ecology. [2]
This seems to contradict Kardashev’s second assumption, that, “Civilizations have no inner, inherent limitations on the scales of their activities,” but the carrying capacity of the cosmos would constitute an extrinsic or exogenous limitation on the scales of a supercivilization’s activities, rather than an intrinsic or endogenous limitation. Moreover, this extrinsic limitation, which, once encountered, entails stagnation, is consistent with Kardashev’s first assumption, that a supercivilization’s activities must be, “in accordance with the laws of Nature” and are restricted by natural factors. The carrying capacity of the cosmos is the natural restriction upon the growth of supercivilizations.
If a galaxy is the ecosystem in which a supercivilization comes to maturity, then the carrying capacity of a galaxy will determine the growth and eventual stagnation of supercivilizations once carrying capacity is reached, with that carrying capacity being determined by the accessibility of available matter and usable energy at the disposal of a supercivilization. This ecological limit to the growth of supercivilizations would constitute, “natural and scientific factors,” that would restrict a supercivilization’s scale of activity, constituting a confirmation of Kardashev’s principles, and would, additionally, make the metaphor of galactic ecology literally true.
This is but one possible scenario for the stagnation of a supercivilization. Sagan and Newman suggested a scenario of supercivilization stagnation based upon the intelligent progenitor species of a civilization transcending their biological limitations and becoming effectively immortal:
“A society of immortals must practice more stringent population control than a society of mortals. In addition, whatever its other charms, interstellar spaceflight must pose more serious hazards than residence on the home planet. To the extent that such predispositions are inherited, natural selection would tend in such a world to eliminate those individuals lacking a deep passion for the longest possible lifespans, assuming no initial differential replication.” [3]
According to Sagan and Newman the result of this would be:
“…a civilization with a profound commitment to stasis even on rather long cosmic time scales and a predisposition antithetical to interstellar colonization.” [4]
I could criticize this scenario on several grounds, but my purpose here is not to engage with the argument, but to present it for exhibition as one among multiple possible sources of stagnation for advanced civilizations. The point is that even the largest, oldest, most advanced civilizations are subject to stagnation—perhaps especially subject to stagnation.
[We could pursue terraforming within our own planetary system even without interstellar travel.]
Are there hard limits to interstellar travel?
In the argument that I unfolded in What Do Stagnant Supercivilizations Do During Their Million Year Lifespans? so as to concede a point to potential critics before this was used as a cudgel against my argument, I tried to show how, even without interstellar travel, a supercivilization could provide for itself civilizational-scale stimulation. My argument was that even a supercivilization confined to its home planetary system could engage in terraforming (or its non-terrestrial equivalent) and even world-building, and so might be able to observe the development of life over biological scales of time and the development of intelligence and civilization over their respective scales of time.
My assumption in making this argument was that a civilization in a position to make scientific observations of phenomena as fundamental as the origins of life, intelligence, and civilization, eventually would formulate a vast body of scientific knowledge based on these scientific observations. All of this was mere prelude in order to ask the question that was bothering me at the time: could a supercivilization remain stagnant when it was in a position to assimilate a vast body of scientific knowledge? It seems unlikely to me that a civilization that had grown to supercivilization status in virtue of its mastery of science and technology could remain unaffected by an influx of scientific knowledge.
As I noted above, I sought to demonstrate the possibility of civilizational-scale intellectual stimulation without recourse to interstellar space travel in order to focus on what is still possible to a very old civilization even under hard limits to space travel. If such a civilization also possessed technology sufficient for interstellar travel, then the possibilities for stimulation would be all the greater, and my argument would be strengthened, so that considering the narrower question of a supercivilization stranded within its home planetary system constituted a more rigorous test of the idea of civilizational-scale scientific stimulation.
We all know that, even among scientists, even among advocates of space travel, there are those who insist upon hard limits to interstellar travel. Hence the need to make an argument without an appeal to interstellar travel. This insistence upon hard limits to interstellar travel is not my position, but I do want to try to understand the reasoning and the motivations that have led otherwise intelligent individuals to declare interstellar travel to be not merely difficult, but an insuperable impossibility (or so difficult as to be impossible for all practical purposes). What, then, are the reasons given for the impossibility or impracticality of interstellar travel? I will consider this question by way of a digression discussing the idea of the search for extraterrestrial intelligence (SETI) and what I call the SETI paradigm.
[The SETI paradigm incorporates assumptions about the likelihood of interstellar travel.]
What is the SETI Paradigm?
Among those who insist upon hard limits to interstellar travel are many advocates of SETI, which is usually conceived as searching for intelligent extraterrestrial signals, whether radio or optical or otherwise. The two positions—denial of the possibility of interstellar travel and pursuit of SETI—are tightly-coupled, as the unlikelihood of interstellar spacefaring civilization is used to argue for SETI as the only alternative to discovering other life and intelligence in the universe through space exploration.
Philip Morrison, who along with Giuseppe Cocconi wrote the first paper on the possibility of SETI, also held this view in regard to, “…real interstellar travel, where people, intelligent machines, or whatever you like, go out to colonize. You travel in space as Magellan circumnavigated the world. I do not think this will ever happen. It is very difficult to travel in space.” [5]
Perhaps the locus classicus of the SETI paradigm was to be found already in 1962, three years after the Cocconi and Morrison paper:
“…space travel, even in the most distant future, will be confined completely to our own planetary system, and a similar conclusion will hold for any other civilization, no matter how advanced it may be. The only means of communication between different civilizations thus seems to be electro-magnetic signals.” [6]
And here is another clear statement of the SETI paradigm:
“The bottom line of all this is quite simply that interstellar travel is so enormously expensive and/or perhaps hazardous, that advanced civilizations do not engage in the practice because of the ease of information transfer via interstellar communication links.” [7]
The frequency with which cautions regarding the danger of interstellar travel are employed as an argument against interstellar travel suggests that the class of persons writing against interstellar travel are risk averse, but that does not mean that all sectors of society are equally risk averse. Some individuals seek out risk in order to confront “limit-experiences” (expérience limite), and never feel so fully as alive as when facing danger, death, and the possibility of personal annihilation. [8]
If we set aside the danger of interstellar travel as an artifact of risk aversion, knowing that risk tolerance is one of those individual variations that drives natural selection, we are left with the argument that interstellar spaceflight would be too expensive and too difficult to pursue. The potential cost of interstellar travel is a matter for another essay on another occasion, but I will only observe here that we do not yet know the economics of supercivilizations, so we must keep an open mind as to whether or not interstellar missions would be prohibitively expensive. I do not think that interstellar travel would be too expensive because a fully automated space-based industrial infrastructure, in possession of the energy and materials that are available beyond planetary surfaces, would find few construction projects to be too expensive, as there would be no economic trade-offs between building starships and producing consumer goods.
The idea that interstellar travel is enormously difficult I do not dispute, though I find it strange that anyone would argue for the, “…ease of information transfer via interstellar communication links,” when these links could not facilitate communication over scales of time relevant to civilization, except for communication with the nearest stars. If there were advanced civilizations located at the nearest stars, with which we might communicate over a time scale of years or even decades, we would already know about these cosmic neighbors. If there are advanced civilizations, then, they must be distant from us, and the greater the distance from us, the more unrealistic it is to imagine that civilizations could communicate on a civilizational scale of time.
I find it astonishing that those coming from the perspective of the SETI paradigm (which assumes limits on interstellar travel, whether hard or relatively soft limits) imagine an advanced civilization having the patience to wait thousands or tens of thousands of years for a message exchange, but being unwilling to send out interstellar missions operating on a similar scale of time. Here we must imagine supercivilizations who do not have the patience to develop advanced transportation technologies, but which do have the patience to wait thousands of years, or tens of thousands of years, or hundreds of thousands of years, to exchange messages with another civilization. For a stagnant supercivilization, this is easily imaginable and possible, but for a civilization in its growth phase, on the path to attaining supercivilization status, a thousand years of technological development is many times longer than terrestrial technological development since the industrial revolution, which has taken us from sailing ship to spaceship.
If a civilization were to send out a message, then collapse some thousands of years later, and the response to the message were then to arrive for some successor civilization still more millennia later, this could be not considered a conversation among civilizations. Under these conditions, only one-way messages make any sense. However, if relativistic spaceflight were to be developed, the intelligent progenitors of a civilization could travel directly to other civilizations and converse with them face-to-face (if both parties to the conversation possessed faces, that is). Now, it is true that civilization on the homeworld of this intelligent progenitor species would experience the same time lapse as beings who stayed on their homeworld and attempted to communicate by conventional SETI means, but those who actually traveled and experienced time dilation could directly experience all that there is to be experienced in the universe. A species in possession of relativistic spaceflight could always arrange for rendezvous with similarly time dilated communities to which they could return. Such a civilization would be “temporally distributed.” This is the argument I attempted to make, however imperfectly, in my previous Centauri Dreams post, Stepping Stones Across the Cosmos, though I suppose I didn’t explain myself adequately.
It beggars belief to suppose that a civilization in possession of relativistic spaceflight would choose to remain on its homeworld, waiting for signals thousands or millions of years old, when it could go out into the cosmos and investigate matters firsthand and to engage with the intelligent progenitors of other civilizations (if there are such) as peers, i.e., as fellow beings. I do not say that it is impossible that this should be the case, but it strikes me as extremely unlikely. If human civilization came into possession of relativistic spaceflight technology, and only one percent of the present human population of (more than) seven billion were interested in this development, there would still be seventy million human beings exploring the universe, and arranging rendezvous with groups having experienced similar time dilation and so belonging to the same historical period (and thus having something in common).
It is not uncommon, however, to view SETI not as predicated upon the impossibility of interstellar flight, and therefore as a substitute for direct contact, but rather as what we can do right now to establish contact, with interstellar travel still in the offing, yet to play its role when our technology achieves that level of development. In this sense, the SETI paradigm and actual exploration are in no sense inherently in conflict. It is entirely possible that a spacefaring civilization might possess a capability to explore relatively nearby planetary systems and yet eventually find itself at a very great distance from any other civilization, with which it could only communicate by electromagnetic means. Both of these enterprises—exploring nearby planetary systems, even if they have no life and no civilization, and communicating with other civilizations too distant for direct travel—would be profoundly stimulating to a civilization in scientific terms. Nevertheless, the SETI paradigm remains a powerful point of reference because in internal coherency of the assumptions it makes.
The advocate of the SETI paradigm must assert that interstellar travel is impossible, because, if it is possible, the idea of a grand Encyclopedia Galactica existing in the form of a network of SETI signals crisscrossing the cosmos is very unlikely to be realized. Thus this cluster of assumptions that I call the SETI paradigm —that interstellar travel is difficult or impossible, that communication is easy, and therefore SETI and METI are, or ought to be, the focus of the efforts of advanced civilizations to interact with peers—hang together by mutual implication. If we reject any one aspect of the paradigm, it falls apart. [9] The SETI enterprise may remain, but it becomes a small part of a big picture, and is no longer the big picture itself.
[Are we confined to our oasis in space?]
Is planetary endemism the eternal truth of humanity?
For some scientists, not directly concerned with SETI as an alternative for exploration, expressing the difficulty of interstellar travel and the unlikelihood of human beings traveling to other worlds has been a way to express the spirit of seriousness (yes, I am invoking Sartre [10]) in relationship to human planetary endemism, since the prior seriousness of our cosmological disposition (our Ptolemaic centrality) was deprived us by the Copernican revolution. No longer at the center of the universe, and schooled in humility by hundreds of years of Copernicanism, we have become acculturated to our apparently marginal role in the universe, and one way to express this idea is to assert that our marginal status is bound to our marginal homeworld orbiting a marginal star in a marginal galaxy.
Given this acculturation, our attachment to our homeworld—rather than being a mere empirical contingency, a truth ready-made by the accident of our origin upon a planetary body—is, as Sartre said, “…an ethics which is ashamed of itself and does not dare speak its name.” Instead of saying (though some do say this), “We ought not to leave Earth,” the SETI paradigm tells us, “We cannot leave Earth.” (The “ought” has been transformed into an “is”; it is brute fact, and no longer subject to volition.) And if we cannot leave Earth, our special relationship to Earth is retained. What Copernicanism has taken from us with one hand, it gives back with the other. We once again have a “special” relationship to Earth, though not the special relationship posited by the Ptolemaic system and its Aristotelian embroiderings.
For example, in my earlier Centauri Dreams post How We Get There Matters I quoted this from Peter Ward and Donald Brownlee:
“The starships of TV, movies, and novels are products of wishful thinking. Interstellar travel will likely never happen, meaning we are stranded in this solar system forever. We are also likely to be permanently stuck on Earth. It is our oasis in space, and the present is our very special place in time. Humans should enjoy and cherish their day in the Sun on a very special planet and not dwell too seriously on thoughts of unicorns, minotaurs, mermaids, or the Starship Enterprise. Our experience on Earth is probably repeated endlessly in the cosmos. Life develops on planets but it is ultimately destroyed by the light of a slowly brightening star. It is a cruel fact of nature that life-giving stars always go bad.” [11]
Eminent entomologist E. O. Wilson [12] went even farther than Ward and Brownlee:
“Another principle that I believe can be justified by scientific evidence so far is that nobody is going to emigrate from this planet, not ever.” [13]
Note that these are assertions without argument, though they invoke scientific evidence without actually arguing from scientific evidence. (I am going to quote more of the latter passage in another post to come, as it perfectly exemplifies a particular perspective on the human condition.)
These extrapolations beyond the SETI paradigm are arguably more damaging than the SETI paradigm itself, because it raises planetary endemism to a metaphysical status, seeking to overturn the essence of the Copernican revolution. The original formulations of the SETI paradigm were made by scientists who had clear and unambiguous reasons for favoring SETI communication over actual exploration, but those who have taken up the SETI paradigm as a way to express their skepticism about a spacefaring future have no such reasons, or, if they have them, they do not state them.
[Ludwig Wittgenstein]
Are we dealing with implicit proscriptions?
It could be that those who argue for hard limits to interstellar travel are incorporating implicit boundaries to the discussion, which, not having been made explicit, have not been part of the argument. This is particularly true in relation to a discussion of supercivilizations, which I will try to show below.
Wittgenstein noted such implicit proscriptions in a passage from his Philosophical Investigations:
“Someone says to me, ‘Show the children a game.’ I teach them gambling with dice, and the other says, ‘I didn’t mean that sort of game.’ In that case, must he have had the exclusion of the game with dice before his mind when he gave me the order?” [14]
This is how people most often talk at cross-purposes, and so we must make an effort to bring such presuppositions to the surface and make them explicit. What I particularly have in mind in regard to implicit boundaries to the scope of a discussion is the possibility that when someone says, “Interstellar travel is impossible,” what they really mean to say is that, “Interstellar travel is impossible within a given time horizon,” or, “Interstellar travel is impossible based on known science and technology.” This is of interest to me in the present context because the longevity of a supercivilization would presumably exceed the bounds of some ordinarily assumed time horizon, so that while most discussion of civilization would not need to address interstellar travel, it might still be allowed that interstellar travel is possible for supercivilizations, and ought to be discussed in relation to them.
Some of the quotes above seem to clearly rule out implicit qualifications to the assertions being made. For example, the quote from Sebastian von Hoerner explicitly stipulates that, “…space travel, even in the most distant future, will be confined completely to our own planetary system, and a similar conclusion will hold for any other civilization, no matter how advanced it may be.” [emphasis added] This doesn’t seem to leave much room for ambiguity. We need to take von Hoerner at his word, and see what it would mean for a civilization to be incapable of interstellar travel regardless of its age or its technological achievements, regardless of where it finds itself in the universe or in the history of the cosmos.
Without making any implicit boundaries of a discussion explicit, the denial of the possibility of interstellar travel becomes the denial of the possibility of interstellar travel by any civilization (1), at any stage of development (2), at any time in the history of the universe (3), by any means (4), and at any location within the universe (5). This would be a very strong assertion to make, and I can’t imagine that many would agree to it if they fully understood that which they were implicitly asserting. [15]
We could take these five implied conditions in turn and formulate how these implicit qualifications to the denial of the possibility of interstellar travel might be formulated if made explicit:
1. Yes, interstellar travel is impossible for our civilization, but not necessarily for some other kind of civilization, and not necessarily impossible for a supercivilization.
2. Yes, interstellar travel is impossible for our civilization at its present stage of development, but given a sufficiently long-lived civilization interstellar travel might be possible.
3. Yes, interstellar travel is impossible at the present time in the history of the universe, but it may be possible at some other time when, for instance, another star approaches the sun closely enough for us to travel to it. [16]
4. Yes, interstellar travel is impossible for known technologies, but we may yet develop technologies that will make it possible, or these technologies may be developed by other kinds civilizations.
5. Yes, interstellar travel is impossible for us, located in a diffusely populated arm of our spiral galaxy, but it might be possible for civilizations located in regions of the galaxy where stars are more closely spaced (such as galactic centers, globular clusters, or merely closely-packed regions of elliptical galaxies).
When we put together the possibilities of different kinds of civilizations (including the different kind of civilization our civilization may become in the future), at different stages of development, at different times in the natural history of the universe, involving different means of transportation, and in other parts of the universe when stars are not as diffusely distributed, it seems a bit contrarian (and I don’t mean that in a flattering way) to insist that any and all interstellar travel is impossible.
A further implicit qualification may be present. Disavowals of the possibility of interstellar travel might be interpreted as specifically addressing the known cosmological circumstances for terrestrial civilization only, or such might be more widely interpreted as holding for any civilization that shares Earth’s cosmological circumstances, or, more widely yet, may hold for civilization whatsoever. In the narrowest of these three senses, the implicit qualification may be made explicit by asserting the proviso, “Well, yes, interstellar travel might be possible under these circumstances, addressing the above qualifications as we have done, but since we are likely the only civilization in the galaxy, the particular cosmological circumstances of Earth and terrestrial civilization are the only cosmological circumstances that really count. A civilization located in a globular cluster where stars are less than a light year apart might be able to pursue interstellar travel, but there are no civilizations; this class of civilizations is the empty set, so we may set it aside.”
By this same reasoning, any consideration of what supercivilizations might accomplish can also be set aside, because terrestrial civilization is not a supercivilization, and if we limit ourselves to what terrestrial civilization is now, and what it can do now, where it is located now, and so on, then we can dismiss the possibility of interstellar travel. (We can also dismiss any future for ourselves other than an eternally-iterated present.) Moreover, we have no particular reason to believe that terrestrial civilization will become a supercivilization, even if it survives for thousands of years or more. Whether or not a civilization does or can develop into a supercivilization may be entirely a matter of mere historical contingency, and, in this sense, the particular cosmological circumstances of Earth will mean the difference between whether terrestrial civilization can develop into a supercivilization, or if it will inevitably fail to do so. Moreover, whether or not a supercivilization stagnates or continues to develop may also be entirely a matter of mere historical contingency (an artifact of galactic endemism, as it were).
[“…we have all entered the Interstellar Age.” Jim Bell]
Is interstellar travel inevitable for long-lived civilizations?
When we combine technologies already known to us, despite our rudimentary development as a technological civilization, and the changing circumstances of the galaxies, which will, over a cosmological scale of time, move some stars closer to us (as other stars move farther from us), denying the possibility of eventual interstellar travel is like denying the possibility of what is already known. It is arguable, then, that interstellar travel is inevitable for supercivilizations. If a civilization persists for a period of time sufficient to become a supercivilization, it would persist through additional stages of development, through changing distances among stars, and through changing cosmological conditions, so that a settled and deliberate avoidance of interstellar travel would seem to be a precondition of a very old and advanced civilizations that never achieved interstellar breakout. We cannot rule this out, but we also cannot assume that every civilization will cultivate a settled and deliberate avoidance of space travel.
We are already capable of sending out a spacecraft into interstellar space. The “grand tour” gravitational assist of the Voyager probes has already sent Voyager 1 outside the solar system, though that was not part of the original mission of that spacecraft, and the spacecraft is not on a trajectory specifically tailored to encounter another star (though it may pass near another star over sufficiently long scales of time). But Voyager is in interstellar space, and in virtue of this Jim Bell has asserted, “…now the Voyagers are leaving the protective bubble of our sun and crossing over into the uncharted territory between the stars… we have all entered the Interstellar Age.” [17] By this measure, terrestrial civilization has already achieved interstellar breakout.
The gravitational assist that has been extensively employed to send robotic probes throughout our solar system, if specifically tailored to interstellar purposes, could significantly improve on Voyager’s trajectory in terms of getting a spacecraft to another planetary system. Given the possibility of an interstellar gravitational assist (cf. The Interstellar Gravitational Assist by Paul Gilster), and the possibility of selecting a trajectory specifically for the purpose to traveling to a star brought relatively nearby to us (i.e., optimizing the gravitational assist for an interstellar trajectory), even if terrestrial civilization stagnated at or near its present technological level of development, it would still be capable of interstellar travel if it endures for a sufficient period of time.
Similar considerations hold civilizations that happen to find themselves in cosmological circumstances more amenable to interstellar travel. In their paper “Globular Clusters as Cradles of Life and Advanced Civilizations” (which I discussed in The Globular Cluster Opportunity), R. Di Stefano and A. Ray discuss the possibilities for advanced spacefaring civilizations in globular clusters, where stars are more closely distributed and travel times between stars and their planetary systems would therefore be shorter than travel times among stars as we typically find them distributed in the arms of spiral galaxies. [18]
[“Assembling a Space Station” by Klaus Bürgle]
Would we recognize another stagnant supercivilization as a peer?
Even without “breakthrough” technologies, utilizing the science and technology available to a civilization a couple of hundred years into its industrial revolution, interstellar flight is conceivable, and, under some circumstances, practicable. Unique cosmological circumstances in which relatively low technological interstellar travel is possible may serve as incubators for spacefaring civilizations, which, under this unique selection pressure, would be more likely to develop the sciences and technologies conducive to the expansion of spacefaring civilization, and which would definitely lead to the development of the practical engineering skills necessary to (even nearby) interstellar travel.
Such a civilization would have far more practical engineering experience in spacecraft and living in space than we possess, even if it did not possess any science or technology that we do not also possess. To a certain degree (though not to an absolute degree), engineering expertise can vary independently of scientific knowledge and technological development. (Technologies have often grown out of engineering experience, so that technology and engineering tend to be more tightly-coupled than science and engineering.) We are reminded of this when we consider the lithic technology of Pleistocene human beings, or the stone-working technologies of early civilizations and their monumental architecture, the particular engineering techniques of which have been lost, and which are thus mysterious to us. Analogously, a spacefaring civilization with greater engineering experience in space than contemporary terrestrial civilization, but no greater scientific knowledge, initially might appear mysterious to us.
A truly ambitious civilization of this kind, perhaps not greatly technologically advanced, but with a determination to project itself into the cosmos, could, over cosmological scales of time (if it could survive that long), pass from one planetary system to another as stars passed nearby each other, pursuing a strategy of opportunistic interstellar travel, hopping from one nearly planetary system to the next, as the occasion presented itself. Such a civilization need not be advanced much beyond the level contemplated by Wernher von Braun in his mid-twentieth century plans for a space program that could ultimately, “…build a bridge to the stars, so that when the Sun dies, humanity will not die.” [19] A rudimentary spacefaring civilization of this kind could, over millions of years, expand throughout a significant portion of the galaxy. They might even be so “quiet” in electromagnetic terms, and leave such a light footprint on the galaxy, that we do not see them coming.
It would be a shock for us on Earth if we were eventually “discovered” by some civilization less technologically advanced than we are, but more keen on space exploration, and willing to invest blood and treasure in the effort when terrestrial civilization is not yet willing to invest in the enterprise. For if terrestrial civilization endures to become a supercivilization, but remains tightly-coupled to its homeworld, fearful to extend its reach into the cosmos, we are likely to be “discovered” rather than being the ones to do the discovering. Carl Sagan once wrote, “The surface of the Earth is the shore of the cosmic ocean… Recently, we have waded a little out to sea, enough to dampen our toes or, at most, wet our ankles. The water seems inviting. The ocean calls.” [20] Though the ocean calls, we have hesitated on the shore. Given a sufficiently long period of time—a scale of time over which a supercivilization might endure—there may be other civilizations that do not hesitate.
In my last Centuari Dreams post, Synchrony in Outer Space, I argued that civilizations can retrench from development that becomes so rapid as to be disorienting and socially disruptive, and that this may have happened with the mid-twentieth century space program, which was defunded and neglected after the Apollo Program, but which could have been expanded, had the political will been present (cf. Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen). In the event of a (counterfactual) expansion of the mid-twentieth century space program, the history of terrestrial civilization would have bifurcated sharply from the path it did in fact take.
If we encountered a civilization that had taken an earlier path to spacefaring civilization, would we recognize them as the path not taken by terrestrial civilization, as being, in a sense, a peer civilization? This would be the meeting of two different kinds of stagnant supercivilizations—one that stagnated scientifically, but which expanded beyond its homeworld, and another that continued to expand the frontiers of scientific knowledge, but which stagnated on its homeworld—neither of them the kind of supercivilization that runs into the limit of the carrying capacity of the galaxy, and neither of them in possession of relativistic spaceflight technology.
These two civiilzations, supercivilizations in virtue of having endured for cosmologically significant periods of time, might be identified as instances of partially stagnant civilizations, and, in this sense, suboptimal civilizations (more specifically, suboptimal supercivilizations). If we acknowledge the possibility of suboptimal partially stagnant civilizations, we would not be surprised that such civilizations had not exhaustively colonized the entire galaxy, and that they had not built a powerful SETI beacon. Many such civilizations might be simultaneously present in the galaxy and yet know nothing of each other. This could be called the “suboptimal hypothesis” in response to the Fermi paradox.
– – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Notes
[1] “On the Inevitability and the Possible Structures of Supercivilizations,” Nikolai S. Kardashev, in M. D. Papagiannis (ed.), The Search for Extraterrestrial Life: Recent Developments, Proceedings of the 112th Symposium of the International Astronomical Union Held at Boston University, Boston, Mass., U.S.A., June 18-21, 1984, Springer, 1985, 497-504.
[2] Galactic ecology has been characterized thus: “The timescale for the Galactic ecology is determined by the rate of star formation and the lifetime of the most massive stars (a few million years). This ecology must have existed, though in gradually changing form, over the life of the Galaxy. It is driven by the energy flows from the massive stars, and the material cycle through these same stars. Carbon, and heavier elements, are created in the massive stars, and released through winds and supernova explosions. They cycle between the various phases of the interstellar medium, before again being incorporated into stars and, in some cases, planetary systems and life. Further star formation in a molecular cloud is self-regulated by the massive stars already forming, and by the cooling agents which are already present in it. These agents gradually change as the elemental abundances, particularly of carbon, increase as the Galaxy evolves.” Michael G Burton, “Ecosystems, from life, to the Earth, to the Galaxy” (2001)
[3] “Galactic Civilizations: Population Dynamics and Interstellar Diffusion,” William I. Newman, Carl Sagan, ICARUS 46, 293-327, 1981, p. 295.
[4] Loc. cit.
[5] Morrison, Philip, “Conclusion: Entropy, Life, and Communication,” in Ponnamperuma, Cyril, and Cameron, A.G.W., Interstellar Communication: Scientific Perspectives, Boston, et al.: Houghton Mifflin Company, 1974, p. 171.
[6] von Hoerner, Sebastian, “The General Limits of Space Travel,” Science, 06 Jul 1962: Vol. 137, Issue 3523, pp. 18-23, DOI: 10.1126/science.137.3523.18)
[7] Wolfe, John H., “On the Question of Interstellar Travel,” in The Search for Extraterrestrial Life: Recent Developments, edited by Papagiannis, Michael D., Dordrecht: D. Reidel Publishing Company, 1985, pp. 449-454)
[8] Of limit-experiences Michel Foucault wrote, “…the point of life which lies as close as possible to the impossibility of living, which lies at the limit or the extreme.” Foucault, Remarks on Marx, semiotext(e), 1991, p. 31. In relation to John Rawls’ famous thought experiment characterizing a just society as one in which the society is constituted from behind a veil of ignorance as to our place in that society, it has been pointed out that the implied risk aversion is in no sense universal, and there are many who might favor a less “just” society on the premise that an able individual not opposed to risk-taking may make a better place for himself in such a world through his own effort.
[9] In calling this the “SETI paradigm” I do not mean to imply that everyone engaged in SETI accepts this paradigm, nor do I wish to argue against the legitimacy or indeed the importance of SETI, which I view as a worthwhile endeavor.
[10] Of the spirit of seriousness Sartre wrote, “The spirit of seriousness has two characteristics: it considers values as transcendent givens independent of human subjectivity, and it transfers the quality of ‘desirable’ from the ontological structure of things to their simple material constitution. For the spirit of seriousness, for example, bread is desirable because it is necessary to live (a value written in an intelligible heaven) and because bread is nourishing. The result of the serious attitude, which as we know rules the world, is to cause the symbolic values of things to be drunk in by their empirical idiosyncrasy as ink by a blotter; it puts forward the opacity of the desired object and posits it in itself as a desirable irreducible. Thus we are already on the moral plane but concurrently on that of bad faith, for it is an ethics which is ashamed of itself and does not dare speak its name. It has obscured all its goals in order to free itself from anguish. Man pursues being blindly by hiding from himself the free project which is this pursuit.” Sartre, Jean-Paul, Being and Nothingness, New York: Washington Square Press, 1969, p. 796.
[11] Peter Ward and Donald Brownlee, The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World, New York: Henry Holt and Company, 2002, pp. 207-208.
[12] Of Wilson I recently noted, “…the major ideas that have marked his scientific career — island biogeography, sociobiology (which turned out to be evolutionary psychology in its nascent state), biophilia, multi-level selection, of which one component is group selection, and the recognition of eusociality as a distinct form of emergent complexity—are ideas that I have used repeatedly in the exposition of my own thought.” I repeat this here so that the reader understands that I in no sense impugn the scientific work of Wilson.
[13] E. O. Wilson, The Social Conquest of Earth, Part VI, chapter 27.
[14] Wittgenstein, Ludwig, Philosophical Investigations, Macmillan, 1989, between sections 70 and 71. This remark is not included in all editions of the Philosophical Investigations, e.g., it does not appear in the 50th anniversary commemorative edition.
[15] The argument I am employing here closely parallels the argument that G. E. Moore makes against unqualified formulations of utilitarianism in his short book Ethics. It is interesting to note in the present context that Moore’s argument against utilitarian takes as a counterfactual unanticipated by unqualified formulations of utilitarianism the possibility of extraterrestrial beings who would not respond to pleasure and pain as do human beings.
[16] Gliese 710 is likely to pass close to our solar system 1.35 million years from now, by which time, if terrestrial civilization survives, it will be a million-year-old supercivilization. In the recent paper “Searching for Stars Closely Encountering with the Solar System Based on Data from the Gaia DR1 and RAVE5 Catalogues,” by V.V. Bobylev and A.T. Bajkova, the authors review stars that will pass within one parsec of our solar system (less than the current distance to Proxima Centauri).
[17] Bell, Jim, The Interstellar Age: Inside the Forty-Year Voyager Mission, New York: Dutton, 2015, p. 3.
[18] Farther yet in the future, after the Milky Way and Andromeda galaxies have merged, and the stars of these galaxies will have been significantly rearranged, so to speak, our sun will have run its race, but many stars that are relatively isolated in regard to their stellar neighborhood may find themselves suddenly (on a cosmological scale of time) with a close neighbor, and vice versa. In this way, the cosmological context of any given planetary system might be radically altered over time.
[19] Quoted in Bob Ward, Dr. Space: The Life of Wernher von Braun, Annapolis, US: Naval Institute Press, 2013, Chapter 22, p. 218, with a footnote giving as the source, “Transcript, NBC’s Today program, New York, November 11, 1998.”
[20] Carl Sagan, Cosmos, chapter 1.
Breakthrough Starshot ‘Sprites’ in Orbit
If Breakthrough Starshot succeeds in launching a fleet of tiny probes to Proxima Centauri in 30 or 40 years, their payloads will be highly miniaturized and built to specifications far beyond our capabilities today. But the small ‘Sprites’ launched into low Earth orbit on June 23 give us an idea where the research is heading. Sprites are ‘satellites on a chip,’ growing out of research performed by Mason Peck and his team at Cornell University, which included Breakthrough Starshot’s Zac Manchester, who used a Kickstarter campaign to develop the concept in 2011 (see Sprites: A Chip-Sized Spacecraft Solution for background on the Cornell work).
Breakthrough Starshot executive director Pete Worden refers to Sprites as ‘a very early version of what we would send to interstellar distances,’ a notion that highlights the enormity of the challenge while pointing to the revolutionary changes that may make such payloads possible. The issues multiply the more you think about them — chip-like satellites in space have no radiation shielding and are susceptible to damage along the route of flight. But missions like these will help us analyze these problems and refine the technology.
Consider communications. In an email yesterday, Mason Peck told me that the Cornell team has juiced up the networking capabilities of the tiny spacecraft. “Now we have them talking to each other in a peer-to-peer network, and this demonstration shows how they synchronize like fireflies,” Peck said, a lovely image that points to what is becoming possible. Instead of a single large probe, think of a cluster of them, a fleet of spacecraft on chips, each carried by a sail. Losses along the route are assumed, but they are overcome by sheer numbers.
And as Peck, himself a key player in Breakthrough Starshot, goes on to point out, we’re beginning to learn how such chips can work among themselves:
This [peer-to-peer networking] capability would allow many of them to share science data, for example, or to create a persistent virtual senor out of many discrete sensors-on-chip. Also, in principle, their transmitting simultaneously could amplify the signals, enabling them to be heard from farther away. Or they could each transmit part of a dataset — say part of a large image.
We’ve never launched fully functional space probes as small as these, each 3.5-by-3.5 centimeter probe built upon a single circuit board and weighing in at just four grams. A Sprite can contain solar panels, computers, communications capability and an array of sensors. The tiny spacecraft’s electronics all function off the 100 milliwatts of electricity each generates.
The Sprites went into space aboard an Indian rocket as supplementary payloads. Now in orbit, the Latvian Venta satellite and the Italian Max Valier satellite, operated by OHB System AG, each have a Sprite attached to the outside, while the Max Valier satellite contains four more Sprites that are be deployed into space for subsequent study of their orbital dynamics.
Breakthrough Starshot is saying that communications from the mission show the Sprites are performing as designed, although Lee Billings, in a Scientific American post, has noted that the Sprites aboard the Max Valier satellite are problematic, with mission controllers thus far unable to establish communications with the external Sprite.
That could mean trouble for deploying the Max Valier’s four internal Sprites, but the stable orbits of the satellites give time for attempted fixes. Zac Manchester tells Billings that controllers have picked up signals from one external Sprite but are not sure which one it is. Even so, adds Manchester: “This is the first time we’ve successfully demonstrated Sprites end-to-end by flying them in space, powering them with sunlight and receiving their signals back on Earth.”
You may recall that Sprites have had their day aboard the International Space Station, being mounted for a long-term experiment outside the station before being returned to Earth undamaged from the exposure. Making a point that resonates with yesterday’s post on deorbiting space debris, Billings adds that the 2014 attempt to put 100 Sprites into orbit aboard a crowd-funded KickSat raised concerns over space debris; in any case, the Sprites were not deployed. Sprites will continue to be tested in space, but for now they will need to operate no higher than 400 kilometers above Earth, below which their orbits decay quickly.
How Sprites will evolve as Breakthrough Starshot continues to examine the technology remains to be seen. But remember that along the way, we have numerous potential uses for the tiny spacecraft here in our own system. Mason Peck has even talked about letting Sprites become charged through plasma interactions and then using a huge magnetic field like Jupiter’s as a particle accelerator to push the chips to thousands of kilometers per second.
That’s actually another way to get a payload to Proxima Centauri, though one that would take decades to get up to speed, and would still require several centuries for the journey. Even so, the idea of swarms of Sprites as interstellar probes, each communicating with the others like fireflies, has a surreal kind of beauty. In the meantime, could we use Sprites for interplanetary missions? Peck pointed out in a 2011 IEEE Spectrum article that the chips could use radiation pressure from the Sun to move around the Solar System. Let me quote him:
If a Sprite could be made thin enough, then its entire body could act as a solar sail. We calculate that at a thickness of about 20 micrometers—which is feasible with existing fabrication techniques—a 7.5-mg Sprite would have the right ratio of surface area to volume to accelerate at about 0.06 mm/s2, maybe 10 times as fast as IKAROS [the Japanese solar sail]. That should be enough for some interplanetary missions. If Sprites could be printed on even thinner material, they could accelerate to speeds that might even take them out of the solar system and on toward distant stars.
Image: Artist’s conception of a cloud of Sprite satellites over the Earth. Credit: Space Systems Design Studio/Cornell University.
Zac Manchester makes the same case, adding that Sprites can also be used to form three-dimensional antennas in deep space to monitor the kind of space weather that can damage power grids and orbiting satellites. Flying aboard larger spacecraft, they could be deployed as a rain of small probes to coat distant planetary surfaces with sensors.
“Eventually, every mission that NASA does may carry these sorts of nanocraft to perform various measurements,” says Pete Worden. “If you’re looking for evidence of life on Mars or anywhere else, for instance, you can afford to use hundreds or thousands of these things—it doesn’t matter that a lot of them might not work perfectly. It’s a revolutionary capability that will open up all sorts of opportunities for exploration.”
InflateSail Tests Deployment & Deorbiting Technologies
Testing out new sail applications is part of a European project called RemoveDebris, which focuses on strategies for dealing with the enormous amount of junk that is piling up around the Earth. Run by the Surrey Space Center at the University of Surrey (UK) and the Von Karman Institute of Belgium, the work takes note of the fact that, from flecks of paint to inactive satellites to spent rocket boosters, our planet is orbited by about 7000 tonnes of material. If you want to visualize that amount, it’s the equivalent of 583 London buses, according to this SSC news release.
You may recall that in the film Gravity, a Space Shuttle is destroyed by space debris. But the issue is hardly confined to Hollywood imaginings. Jason Forshaw is Surrey Space Centre project manager on the RemoveDebris team:
“Various orbits around the Earth that are commonly used for satellites and space missions are full of junk, which is a significant danger to our current and future spacecraft. Certain orbits – which are commonly used for imaging the earth, disaster monitoring and weather observation – are quickly filling up with junk, which could jeopardise the important satellites orbiting there. A future big impact between junk in that orbit could result in a real life ‘Gravity-like’ chain reaction of collisions.”
A scary thought, but as you would imagine, my interest for Centauri Dreams is primarily in terms of that interesting sail deployment. Funded by the European Commission, the Surrey effort, called InflateSail, has demonstrated inflatable sail deployment techniques and will be testing deorbiting sail technologies from a small satellite. Launch occurred on June 23, with deployment shortly after the CubeSat carrying the sail achieved orbit.
The sail is designed to demonstrate the effectiveness of a drag sail at causing satellites to lose altitude and burn up in the atmosphere. The satellite uses a cool gas generator to inflate a one-meter long boom. After boom inflation, a motor extends four carbon booms that extract the 10-meter square sail. In future use, such a sail could be carried aboard a satellite and deployed at the end of its life, to ensure that it does not join the ranks of space debris.
Image: The InflateSail mission has successfully tested both inflatable and ‘deorbit sail’ technologies in space from a small nanosatellite. Credit: University of Surrey.
You may recall that NASA launched a small sail called NanoSail-D2 in 2010 that eventually re-entered the atmosphere after 240 days in orbit. Its deployment from the FASTSAT satellite in which it launched did not occur on time, but the sail later ejected and deployed three days later, a follow-up to an earlier NanoSail-D that was lost during the launch attempt. In addition to testing systems for sail deployment, NanoSail-D2, like InflateSail from the SSC, was designed to explore deorbiting measures that could be applied to space debris.
The Surrey sail is in orbit and returning data to ground controllers. Drag produced by the sail will gradually lower its altitude for re-entry, causing it to burn up in the atmosphere. Craig Underwood, who is in charge of the Surrey Space Center’s environments and instrumentation group, is principal investigator for the mission. Says Underwood:
“We are getting tremendous data from the spacecraft, which have already given new insights into these key deorbiting technologies in the real space environment. InflateSail heralds yet another successful CubeSat mission for the space engineering and academic team at the SSC. It also demonstrates how we can effectively help reduce space junk, and later this year we will launch one of our flagship missions, RemoveDebris – one of the world’s first missions to test capturing of artificial space junk with a net and harpoon.”
Centauri Dreams‘ take: The more experience we gain with sail deployment and operations, the better. In this case, we are looking at near-term sail applications to solve a serious problem for spacecraft near the Earth. But remember the success of Japan’s IKAROS mission at going interplanetary and testing sail deployment, navigation and data return. Early in the next decade, if all goes as planned, a new sail from JAXA spanning 50 meters to the side will deploy and head for Jupiter to study its trojan asteroids.
The future of sail technologies seems bright, particularly as we gain experience and begin to explore beamed energy possibilities. The fact that the Surrey Space Center has successfully deployed an inflatable sail from the small CubeSat in which it was contained is an encouraging nod to the continued development of sails for near-Earth use. As we master these technologies, we’ll apply them to missions deep into the Solar System and beyond.