Centauri Dreams

Imagining and Planning Interstellar Exploration

Luhman’s Latest: A New, Nearby Brown Dwarf

Kevin Luhman (Pennsylvania State University) has focused much of his research on the formation of low-mass stars and brown dwarfs in star-forming regions near the Sun. This involves working with relatively young stars, but Luhman is also on the alert for older objects, very cool brown dwarfs in the solar neighborhood. Brown dwarfs cool over time, and as Luhman describes on his university web page, they are ‘valuable laboratories for studying planetary atmospheres.’ They also give us a chance to test theories of planet formation in extreme environments.

luhman

Now we have Luhman’s latest, and it would not be a surprise if the whole category of nearby, cool stellar objects begins to get referred to as ‘Luhman objects’ or some such. Remember that it was just back in March that the astronomer discovered, using WISE images, a binary brown dwarf system at a scant 6.5 light years from Earth. The new find is WISE J085510.83-071442.5. It has the third highest proper motion and the fourth largest parallax of any known star or brown dwarf, and can lay claim to being, at least for a time, the coldest brown dwarf on record.

Image: Penn State’s Kevin Luhman, a specialist in low mass stars and brown dwarfs, who is filling in our map of such objects close to the Sun.

How cold? This object is thought to be between -48 to -13 degrees Celsius, colder than previous record holders, which were found to be close to room temperature. WISE imagery from 2010 was confirmed by two additional images taken by Spitzer in 2013 and 2014, with further observations at the Gemini South telescope on Cerro Pachon in Chile. The WISE and Spitzer data were used to measure the distance to the object via parallax. It turns out to be 7.2 light years away, fitting nicely into the chart below, which shows the Sun’s immediate neighborhood.

nearby_objects

Image: This diagram illustrates the locations of the star systems closest to the sun. The year when the distance to each system was determined is listed after the system’s name. NASA’s Wide-field Infrared Survey Explorer, or WISE, found two of the four closest systems: the binary brown dwarf WISE 1049-5319 and the brown dwarf WISE J085510.83-071442.5. NASA’s Spitzer Space Telescope helped pin down the location of the latter object. The closest system to the sun is a trio of stars that consists of Alpha Centauri, a close companion to it and the more distant companion Proxima Centauri. Credit: NASA/Penn State University.

That’s a fascinating chart, and while all of us can share the determination to learn more about brown dwarf and planet formation and the atmospheres of cold objects, some of us also think in terms of targets for future probes, hoping that brown dwarf hunter Luhman may turn up something even closer than the three he has already discovered. Objects as cool as Luhman’s latest can all but disappear at visible wavelengths, but their infrared glow makes detection possible, with surely more to come. Thus Michael Werner, a Spitzer project scientist at JPL:

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the sun’s nearest neighbors. This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.”

We’re talking about an object somewhere between 3 and 10 times the mass of Jupiter, which makes WISE J085510.83-071442.5 one of the least massive brown dwarfs known, if indeed it is a brown dwarf rather than a free-floating gas giant that has been expelled from some undetermined star system. Luhman comments on the latter possibility in the paper on this work:

At this mass, WISE 0855?0714 could be either a brown dwarf or a gas giant planet that was ejected from its system. The former seems more likely given that the frequency of planetary-mass brown dwarfs is non-negligible while the frequency of ejected planets is unknown. Assuming that WISE 0855?0714 is a Y dwarf, the four closest known systems now consist of two M dwarfs and one member of every other spectral type from G through Y.

luhman2

Image: This artist’s conception shows the object named WISE J085510.83-071442.5, the coldest known brown dwarf. Brown dwarfs are dim star-like bodies that lack the mass to burn nuclear fuel as stars do. WISE J085510.83-071442.5 is as cold as the North Pole (or between minus 48 to minus 13 degrees Celsius). The color of the brown dwarf in this image is arbitrary; it would have different colors when viewed in different wavelength ranges. Credit: NASA/JPL-Caltech/Penn State University.

The paper goes on to note that the newly discovered brown dwarf now offers the chance to test various atmospheric models in an unexplored temperature regime, something that will require refining the parallax measurement and ‘deeper near-IR photometry to better constrain its spectral energy distribution.’ We’ll also need to take advantage of near-term advances in our spectroscopy of the sort the James Webb Space Telescope should make available.

The paper is Luhman, “Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun,” The Astrophysical Journal Letters Vol. 786, No. 2 (2014), L18 (abstract / preprint). A JPL news release is also available.

tzf_img_post

Interstellar Conferences for 2014

2014 isn’t nearly as top-heavy with interstellar conferences as the year before, but we do have two to discuss this morning, both of them slated for fall in North America. Looking through the preliminary information, I’m remembering how many good sessions grew out of last year’s meetings. For a field that grew up fueled largely by the enthusiasm of individuals who met in person only rarely, we suddenly found ourselves with the 100 Year Starship conference in Houston, Icarus Interstellar’s Starship Congress in Dallas, two Starship Century events (one in London, one in San Diego), the Tennessee Valley Interstellar Workshop (version 2) and a London conference on what Bob Parkinson so wonderfully calls ‘the philosophy of the starship.’

Various smaller get-togethers occurred as well, and so, of course, did huge space-dominated conferences like the International Astronautical Congress and other aeronautics, astronautics and SETI sessions around the world. But who would have thought even ten years ago, much less fifty, that we would be having multiple conferences in a single year arranged around starship topics, and that groups dedicated to studying the possibilities of interstellar flight would be proliferating? A friend and I were musing that we found ourselves living in a science fictional world, and the thought came that it just seemed that way because we were getting older. And, of course, we are, but it’s also true that deep space really has become a highly visible topic.

100 Year Starship Symposium 2014

symposium_14

The theme for this year’s 100 Year Starship Symposium is Pathway to the Stars, Footprints on Earth, a nod to the synergies the organization continues to seek out between the huge advances in technology and biological science we’ll need as we anticipate deep space missions and the developing spinoff tools we’ll gain from such work to improve life on Earth today. The symposium will be held at the George R. Brown Convention Center in Houston from 18 to 21 September.

Although registration for the actual event has not yet begun, the call for papers is now active, with abstract submissions manageable through the symposium site. The deadline for abstracts is May 31, with notification of acceptance on June 30. Accepted presentations and poster submissions are then due on the 10th of September. Quoting from the submission guidelines:

Submissions can be perspectives on the central dogma, experimental results, and review of a specific topic. You must ensure that it fits the track topic to which you are submitting. Individual presentations will only be presented in one track. Individuals do not have to be associated with an institution to submit an abstract. Please note that materials should be non-commercial in content, any commercial presentation that communicates a service, technology or product can be submitted to our poster session.

Submissions will be reviewed based on bona fide field of inquiry/thought/research that derive from validated patents, literature, mathematics or practice. The data submitted should represent one or more of the following:

Actual data or background search generated presents a challenge to current dogma or asks a significant question

Data moves the field forward or clarifies some aspect of the field

Solves a problem acknowledged in the field

Provides a novel, well supported integration and/or review of field and proposes specific concept

Submitted abstracts are well written, 300 word, concise and includes a statement of the following items. If actual data, results and conclusions are not available, please provide a well thought out plan for how the information will be generated.

Background

Problem and hypothesis

Experimental design (or literature review)

Data

Results

Conclusions and Discussion

The tracks are available on the symposium site. They range from propulsion and energy to near-term spinoff technologies, data, communications and information technology, and major issues of life support and sociology. The data and communication track is a new one, highlighting recent work on data retrieval and transmission at interstellar distances. Also new at the 2014 symposium will be a track on interstellar education, looking at the role of education at producing what the site calls ‘interstellar citizens’ and probing current and future educational practices. Poster presentations are available for discussions in a small group setting.

Tennessee Valley Interstellar Workshop

The third Tennessee Valley Interstellar Workshop will be held November 9-12 in Oak Ridge, Tennessee at the DoubleTree by Hilton Hotel with a theme of Long-Term Thinking–Present-Day Action. I’ve recently received the call for papers for this event, which was originally conceived by Les Johnson, Greg Matloff and Robert Kennedy in a wonderful hotel in the Italian alps in the town of Aosta. I remember the setting well, having spent several days there at one of the earlier Aosta conferences — it’s a place where long-term thinking seems to come naturally. Have a look at the TVIW website for further background, including Les’ summation of the event:

“The Tennessee Valley Interstellar Workshop is an opportunity for relaxed sharing of ideas in directions that will stimulate and encourage Interstellar exploration including propulsion, communications, and research. The ‘Workshop’ theme suggests that the direction should go beyond that of a ‘conference’. Attendees are encouraged to not only present intellectual concepts but to develop these concepts to suggest projects, collaboration, active research and mission planning. It should be a time for engaging discussions, thought-provoking ideas, and boundless optimism contemplating a future that may one day be within the reach of humanity.”

Presentation/paper and workshop topic submissions are now open through August 1, with the full papers and presentations due two weeks prior to the start of the meeting. Do note that this event is limited to 75 participants, with applications for attendance and further information about submissions made by email to tviw2014@tviw.us. A bit more from the call for papers:

Participants who do not wish to present a paper or facilitate a workshop will also be considered and are requested to submit a bio describing their involvement in the field of developing Interstellar concepts, including interstellar-related space science and technology and space advocacy. Submissions relating humanities, art and social sciences to interstellar exploration are also encouraged. Going to the stars will involve and engage most aspects of human society and innovation in all fields that may contribute are of interest. All Participants (including Presenters) are encouraged to bring a free-standing poster describing their Interstellar work, suitable for exhibition.

Presenters will be given thirty minutes to present their work including a Q&A session at the end, and it seems probable (though I haven’t confirmed this) that selected papers will be submitted to the Journal of the British Interplanetary Society for publication. Note, too, that on Sunday November 9, TVIW will conduct two seminars to which accepted attendees are invited, one a three-hour short course on space propulsion taught by Les Johnson, the other a course on terraforming, its methods and rationale, taught by Ken Roy. Registration for these seminars can be managed through the TVIW website once your attendance has been confirmed. Direct any questions about participation to registrar@tviw.us.

tviw

The Infrastructure Problem [1]

Nick Nielsen today tackles an issue we’ve often discussed in these pages, the space-based infrastructure many of us assume necessary for deep space exploration. But infrastructures grow in complexity in relation to the demands placed upon them, and a starship would, as Nick notes, be the most complex machine ever constructed by human hands. Are there infrastructure options, including building such vehicles on Earth, and what sort of societies would the choice among them eventually produce? You’ll find more of Nielsen’s writing in his blogs Grand Strategy: The View from Oregon and Grand Strategy Annex. In addition to his continuing work for the space community, Nick is a contributing analyst with strategic consulting firm Wikistrat.

by J. N. Nielsen

Nick-Nielsen

Although we have spacecraft in orbit around Earth, as well as on the moon and other planets and their moons, and even spacecraft now in interstellar space, so that the products of human industry are to be found throughout our solar system and beyond, we have as yet no industrial infrastructure off the surface of the Earth, and this is important. I will try to explain how and why this is important, and why it will remain important, potentially shaping the structure of our civilization.

Made on Earth

All our spacecraft to date have been built on Earth where we possess an industrial infrastructure that makes this possible. The International Space Station, of course, was assembled in orbit from components built on the surface of the Earth and boosted into space on rockets. It has long been assumed, if we were to build a very large spacecraft (say, for a journey to Mars or beyond), that it would be constructed in much the same way: the components would be engineered on Earth and assembled in space. There is an obvious terrestrial analogy for this: we build our ships on land, where it is convenient to do the work, and then launch them only when the hull is seaworthy. Once the hull is in the water it is fitted out, and then come sea trials, but it would not be worth the trouble to try to build the hull of a ship in the water.

The analogy, however, seems misleading when applied to space. In space, we could build very large spacecraft in microgravity environments that would considerably ease the task of manipulating awkwardly large and heavy components. Also, large spacecraft never intended to enter into planetary atmospheres could be built in the vacuum of space with no concern for the aerodynamics that are crucial for a craft operating in a planetary atmosphere. The stresses of transiting a planetary atmosphere would be an unnecessary requirement for most deep-space vehicles. But what would it take to really build a spacecraft in space, in contradistinction to the assembly of completed modules in orbit?

Nielsen_image

Image: One take on building starships in space. This view of the Project Icarus orbital construction ring prototype design shows resupply from the Skylon single stage to orbit spacecraft now under development by Reaction Engines. Credit: Adrian Mann.

Even a “basic machine shop” in orbit would not come close to providing the kind of industrial infrastructure we have been building on the surface of the Earth for more than two hundred years now. Production processes ripple outward until they involve much of the planet’s industrial production capacity, a lesson that can be illustrated by Adam Smith’s famous example of the day-laborer’s woolen coat or by what Austrian economist Eugen Böhm von Bawerk called round-about production processes. [2] I suspect that many will argue that the advent of 3D printing is going to change everything, and that all you need to do is to boost a 3D printer into orbit and then you can produce anything that you might need in orbit. Well, not quite.

The Growth of Infrastructure

As civilization grows more complex, infrastructure becomes more complex, and more precursors are necessary to achieving the basic functionality assumed by the institutions of society. We see this in the increasing complexity of our cities. There was a time when cutting edge technology meant bringing water into a city with aqueducts and having underground sewers to carry away the waste. To the infrastructure of water supplies we have added fossil fuel supplies, electricity supplies, telecommunications lines, and now fiber optic cables for high speed internet access. (On the growing infrastructure of civilization cf. my post The Computational Infrastructure of Civilization.) All of these infrastructure requirements have been continually updated since their initial installation, so that, for example, the electricity grid is significantly more advanced today than when introduced.

For the lifeway of nomadic foragers, no infrastructure is necessary except for a knowledge of edible plants and available game. Since the geographical expansion of nomadic foragers is slow, change in requisite knowledge is also slow, as a moving band of foragers only very gradually sees the diminution of traditional dietary staples and only very gradually sees the emergence of unfamiliar plants and animals. Much greater infrastructure characterizes agrarian-ecclesiastical civilization, and much greater still industrial-technological civilization. The extraterrestrialization of industrial-technological civilization (yielding extraterrestrial-technological civilization) requires an order of magnitude of increase in infrastructure for the necessary maintenance of human life.

How to Build a Starship

The spacecraft requisite to the achievement of extraterrestrialization are today, and are likely to remain, the most complex and sophisticated machines ever built by human beings. To produce not only their components, but the machines required to produce the components, requires the entire advanced infrastructure that we now possess in our most developed centers of manufacturing. A useful analogy for understanding the industrial requirements for the production of spacecraft is to think of building the spacecraft of the future as we think today of building a nuclear-powered submarine. Like a nuclear submarine, an SSTO (single stage to orbit) spacecraft will be one of the most technically difficult and demanding engineering tasks ever attempted; it will involve parts suppliers from all over the world; it will involve millions of individual parts that each have to fitted in place by a human hand, and the assembly itself is likely to require many years of painstaking construction.

There is another sense in which spacecraft probably will be like nuclear submarines: a spacecraft is going to have significant power demands, and the most compact way to address this with our current technology is what we now do with your biggest submarines: nuclear power. The compact reactors on submarines (and aircraft carriers, which typically have two reactors for redundancy) have proved themselves to be safe and serviceable, and they can keep generating power for 25-30 years without refueling – possibly a sufficient period of time to make an interstellar journey. We can, of course, readily make use of solar power in space, though this is not compact and would not be suitable for a starship, which would be operating for extended periods of time far from the light of the sun or any other star.

I think it is clear that once we attain the ability to produce technologies commensurate to the challenge of a practicable starship, we are likely going to want to employ more than one propulsion technology, so that the drive system is highly hybridized. By “hybridized” I mean two or more forms of propulsion on a single spacecraft, and if these multiple forms of propulsion can share structures of the propulsion system, the more they do so the more truly “hybrid” the propulsion design. We may want to have one drive system for use in planetary atmospheres, another for orbital maneuvering, a third for interplanetary travel, and lastly a drive for interstellar travel. Later that list may need to be lengthened for a drive for intergalactic travel.

Hybrid propulsion systems are already in development, and these innovations could greatly improve the efficiency of chemical rockets. I have written many times about the Skylon spaceplane with its “combined cycle” SABRE engines that operate as conventional jet engines in the atmosphere, and which are able to transition to rocket propulsion for exoatmospheric operation. (Cf., e.g., Skylon spaceplane engine concept achieves key milestone, Key Tests for Skylon Spaceplane Project, Move to Open Sky for Skylon Spaceplace, and Addendum on Jet Propulsion Technology) This is a truly hybrid propulsion system, as the jet engine and chemical rocket share structures of the propulsion system, though it remains within the parameters of chemical rockets.

For faster travel to farther destinations, we will need hybrid propulsion systems of exotic technologies that do not exist today except in theory. A spacecraft with an Alcubierre drive and some basic form of chemical or nuclear or ion thrusters might be able to do the job, and this might well be the first step in building a starship that give us access to the galaxy in the way that we now have access to the surface of Earth. However, a spacecraft with an Alcubierre drive and a fusion or antimatter drive, or with Q-thrusters, would be much better. If, for example, you traveled to our closest cosmic neighbor, Alpha Centauri, you might want to travel the greater part of the distance with the Alcubierre drive, but once you get there you would probably want to make your passage between Proxima Centauri, Alpha Centauri A, and Alpha Centauri B with your fusion or antimatter drive, and you would definitely want to explore the planets of these stars with this “slower” drive. (And you probably wouldn’t want to use something like a Bussard ramjet for transit within a solar system.)

Two Responses to the Infrastructure Problem

A spacecraft mounting the kind of hybridized propulsion systems outlined above would represent an order of magnitude complexity even beyond the example of assembling a nuclear submarine. For the next few decades at least, and perhaps for longer, there will be no machine tools and no industrial plant in space. All the facilities we need to build a large and complex engineering project that is likely to occupy many years of painstaking effort, are earth-bound. Moreover, such technical assembly work would probably need to be performed by skilled craftsmen in a familiar environment conducive to careful and patient work. While there are significant advantages to constructing spacecraft in orbit, as noted above, the world’s most advanced industrial plant and best construction teams are on the earth and will be for some time, so that there remain compelling reasons for continuing to construct spacecraft on Earth, despite being at the bottom of a gravity well. This, in a nutshell, is the infrastructure problem.

There are two obvious responses to the infrastructure problem: (1) we accept the limitations of our industrial plant at face value and organize all space construction efforts around the assumption that spacecraft will be built on Earth, or (2) we begin the long task of constructing an industrial infrastructure off the surface of Earth. This latter approach may take as long as or longer than the building of our industrial infrastructure on Earth. While we have the advantage of higher technology and knowing what it is we want to produce, we also face the disadvantage of the harsh environment of space, and the need to initially boost from the surface of Earth everything not only required for industry, but also everything required for human life.

Almost certainly any human future in space will consist of some compromise between these two approaches, with the compromise tending either toward Earth-based industry or space-based industry. The model of extraterrestrialization that eventually prevails will not only be a matter of socioeconomic choice, but also a function of what is technological possible and what is technologically practicable. This latter requirement is insufficiently appreciated.

The Role of Contingency

The large-scale structure of human civilization, once it expands into space (provided we do not languish in permanent stagnation) will depend upon technological innovations that have not yet happened, and therefore the parameters of which are not yet known. That is to say, humanity as a spacefaring civilization is not indifferent to how we are able to travel in space, and how we are able to travel in space will be a result of the sciences we develop, the technologies that emerge from this science, and which among these technologies prove to be something that can be engineered into a practical vehicle, in terms of extraterrestrial transportation.

Just as we as a species are subject to contingencies related to the climatological conditions that shaped our evolution, the geography that has shaped our civilization, the gravity well of the Earth as a function of its mass that constrained our initial entry into space, and eventually the layout of our solar system as it will shape the initial spacefaring civilization that we can build in the vicinity of our own star, so too we are subject to contingencies that will arise out of our own actions (and inactions). These latter contingencies include the sciences we pursue, the technologies we develop, and the engineering of which we are capable. The human contingencies that determine the structure of our civilization in the future also include unknowns such as exactly which science, technology, and engineering projects get funding (cf. my recent post Why the Future Doesn’t Get Funded).

If it turns out that the science behind the Alcubierre drive concept is sound, and that this science can be the basis of a technology, and this technology can be engineered into a practicable starship, we may never construct an industrial infrastructure in space. It may prove to be easier to construct starships not as massive works slowly assembled in Earth orbit, but rather as relatively compact spacecraft constructed in the convenience of a hangar, which, once finished, can be rolled out onto the tarmac, fired up, and blasted into space, thence to activate its Alcubierre drive once in orbit in order to fly off to other worlds. If, in addition, habitable planets (or planets that can be made habitable) are not too rare in the Milky Way, and human beings prefer to spend their time planetside, the industrialization of space may never occur. In this scenario, space-based industry always remains marginal, even as we become a spacefaring civilization.

As it is, we already today seeing the beginnings of the gradual transition of our industrial infrastructure into something cleaner than the smoke-belching chimneys of the early industrial revolution. As this process continues, and we continue to improve the efficiency of solar cells, there may be little or no economic benefit for moving industry into space. We may pass a threshold, beyond which Earth-based industry can be made entirely benign, therefore obviating the need to move industry into space. But all of this hinges on unknowns of an eminently practical sort, and which we cannot predict until we have actual experience operating the technologies in question.

Space-Based Infrastructure and Planetary-Based Infrastructure

If the Alcubierre drive turns out to be impracticable, or even not practicable at technological levels of development obtainable in the next few hundred years, then the need to construct different kinds of spacecraft will be more pressing. The idea of building a sleek spacecraft in a hangar and blasting off to other worlds directly from Earth’s surface may be impossible. In this case, becoming a spacefaring species, and especially becoming a starfaring species, will likely mean the construction of enormous industrial works off the surface of the Earth, initially assembling large spacecraft in Earth orbit or beyond, but gradually providing more and more goods and services in space without having to boost them all from the ground, which means the industrialization of space.

The industrialization of space, in turn, would mean a very different kind of large-scale spacefaring civilization than a spacefaring civilization that had no need of the industrialization of space, as described in the examples above. A spacefaring civilization of primarily space-based industry would be distinct from a spacefaring civilization of primarily planetary-based industry. Distinct social, political, and economic institutions and imperatives would emerge from these distinct industrial infrastructures.

If, as Marx claimed, ideological superstructures follow from the economic infrastructure that the former emerge to justify, [3] then it is to be expected that space-based economic infrastructure will produce an ideological superstructure distinct from planetary-based economic infrastructure. In the distant future, when we have occasion to survey many different spacefaring civilizations, this may prove to be a fundamental distinction that divides them.

Notes

[1] At the Icarus Interstellar Starship Congress last year, a member of the audience asked a question of Kelvin Long in which the questioner used the phrase, “the infrastructure problem,” which strikes me as the perfect formulation for the topics I am covering today.

[2] On Adam Smith’s example of the day-laborer’s woolen coat cf. Smith’s The Wealth of Nations, the final paragraph of Book I, chapter 1; on round-about production processes in the work of Eugen Böhm von Bawerk, cf. Thesis 22 of my book Political Economy of Globalization.

[3] The locus classicus for this Marxian view is to be found in Marx’s A Contribution to The Critique of Political Economy, translated from the Second German Edition by N. I. Stone, Chicago: Charles H. Kerr & Company, 1911, Author’s Preface, pp. 11-12: “In the social production which men carry on they enter into definite relations that are indispensable and independent of their will, these relations of production correspond to a definite stage of development of their material powers of production. The sum total of these relations of production constitutes the economic structure of society — the real foundation, on which rise legal and political superstructures and to which correspond definite forms of social consciousness. The mode of production in material life determines the general character of social, political, and spiritual processes of life. It is not the consciousness of men that determines their existence, but, on the contrary, their social existence determines their consciousness.” Note that Marx usually refers to the “economic base” of a society rather than to its “economic infrastructure.”

tzf_img_post

55 Cancri A: Stable Orbital Solutions

We’re developing a model for the fascinating planetary system around the binary star 55 Cancri, a challenging task given the complexity of the inner system in particular. What we have here is a G-class star around which five planets are known to orbit and a distant M-dwarf at over 1000 AU. Have a look at the diagram below and you’ll see why the system, 39 light years away in the constellation Cancer, draws so much attention. It’s much more than the fact that direct measurements of the G-class star’s radius are possible at this distance, which have led to precise measurements of its mass, about the same as our Sun. It’s also the tightly packed configuration of the inner planets.

Ford_55-Cnc-linear_4-2014

Image: An illustration of the orbital distances and relative sizes of the four innermost planets known to orbit the star 55 Cancri A (bottom) in comparison with planets in own inner Solar System (top). Both Jupiter and the Jupiter-mass planet 55 Cancri “d” are outside this picture, orbiting their host star with a distance of nearly 5 astronomical units (AU), where one AU is equal to the average distance between the Earth and the Sun. Credit: Center for Exoplanets and Habitable Worlds, Penn State University.

First discovered to be orbited by a giant planet in 1997, 55 Cancri A has been the subject of numerous studies in the years since. We have five planets in total, one a cold gas giant evidently similar to Jupiter and in a similar orbit and another, of particular interest, a ‘super-Earth’ in close proximity to the host star. This world, 55 Cancri e, was thought until 2011 to orbit the star in three days, but astronomers then determined that its complete orbit took less than 18 hours. The software developed by Penn State graduate student Benjamin Nelson and Eric Ford (Penn State Center for Astrostatistics) has pegged the mass of 55 Cancri e at eight Earth masses.

A quick note on nomenclature: The formal designation for the innermost world here should be 55 Cancri A e, with the other planets referred to accordingly. I’m following the just published paper on this work in referring to it as 55 Cancri e, without reference to the distant M-dwarf.

The transiting world is now known to have a radius twice that of Earth and a density about the same as our planet. Another glance at the diagram shows that this is a world far too hot for life as we know it, reaching temperatures in the range of 2300 Kelvin. The computations of Nelson and Ford draw the details of 55 Cancri e out of the motions of the giant planets 55 Cancri b and c, worlds that although orbiting outside the orbit of 55 Cancri e are still located closer to the star than Mercury is to our Sun. The new techniques help us understand how large planets like these can orbit so close to their star without collision or the expulsion of one of the two worlds.

The motion of the inner giant planets has to be accounted for to measure the detailed properties of the ‘super-Earth,’ and Ford notes that most previous work on this system had ignored their interactions. Nelson explains the significance of understanding the stability of their orbits:

“These two giant planets of 55 Cancri interact so strongly that we can detect changes in their orbits. These detections are exciting because they enable us to learn things about the orbits that are normally not observable. However, the rapid interactions between the planets also present a challenge since modeling the system requires time-consuming simulations for each model to determine the trajectories of the planets and therefore their likelihood of survival for billions of years without a catastrophic collision.”

1418 radial velocity observations from four observatories went into this work along with transit studies for 55 Cancri e, out of which orbital solutions stable for a minimum of 108 years emerge. The researchers evolved four- and five-planet models as they examined instabilities in the system, coupling their work with radial velocity observations to constrain the planet masses and orbital parameters that produce dynamically stable solutions. As the paper notes, “By combining a rigorous statistical analysis, dynamical model and improved observational constraints, we obtain the first set of five-planet models that are dynamically stable.” Another interesting finding: 55 Cancri d turns out to be “the closest Jupiter analog to date” in terms of orbital period and eccentricity.

The paper is Nelson et al., “The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis,” Monthly Notices of the Royal Astronomical Society, published online 22 April 2014 (preprint). Also see this Penn State news release.

tzf_img_post

Envisioning Alien Worlds

How we conceive of distant worlds is important. After all, we want to be scientifically accurate even as we deal with subjects that fire the public imagination. Thinking about planets in the habitable zones of other suns invariably makes us think of ‘Earth 2.0’ and the prospect of green and blue planets filled with life. But each situation will be different, which is part of the great fascination of this quest. Billions and billions of worlds, each of them sui generis.

Kepler-69c

Science fiction has offered us glimpses of many worlds tantalizingly like the Earth but in some major respect different. Here, for example, is a prose description of a planet circling the star 82 Eridani, as envisioned by Stephen Baxter in his 2011 novel Ark. We are looking at it from the starship that has taken a band of colonists/refugees from a drowning Earth to what could be their new home:

A big strip of land stretching north to south across the equator was “the Belt,” a kind of elderly Norway with deep-cut fjords incising thousands of kilometers of coastline. The northern half of the Belt was currently ice-free, but its southern half, stretching into the realm of shadow, was icebound, and snow patches reached as far north as the equator. Sprawling across a good portion of the eastern hemisphere was the roughly circular continent they called “the Frisbee,” a mass of rust red broken by the intense blue of lakes and lined by eroded mountains. Its center was dominated by a huge structure, a mountain with a base hundreds of kilometers across, and a fractured caldera at the top. The mount was so like Olympus Mons on Mars that giving it the same name had been unavoidable, and it so dominated the overall profile of the continent, giving it an immense but shallow bulge, that the nickname “Frisbee” was a good fit. Then, to the west of the Belt, an archipelago sprawled, a widespread group of islands, some as large as Britain or New Zealand, that they called “the Scatter.” There was one more continent at the south pole, currently plunged in darkness and buried under hundreds of meters of winter snow, called “the Cap.” The world ocean itself had no name yet; the seas could be named when they were ready to go sailing on them…

Image: An artist’s concept of a habitable zone world, in this case Kepler-69c. This image is, of course, based on an actual Kepler discovery, though like Baxter’s science fictional description, it has to substitute imagination for detailed data. Credit: Ames Research Center/NASA, JPL-Caltech.

Baxter’s world is fascinating, a place the colonists assume is Earth 2.0 until they take a closer look. For one thing, there’s little tectonic activity here, so the kind of geological and biological cycling we take for granted on Earth has been, over the eons, sharply reduced. But the real showstopper is the planet’s obliquity, interesting to note in light of the University of Washington work on axial tilt that we looked at on Monday. This world around 82 Eridani shows an obliquity of ninety degrees — compare that to Earth’s 23.5 degrees. In other words, each part of the planet except for a band along the equator will suffer through months of perpetual darkness, then perpetual light.

Land and colonize such a world or press on for another? I won’t give away that decision, which Baxter handles in a believable and interesting way. But as we saw yesterday, there are models now emerging that show such a planet might make itself habitable by never developing truly global ice. In any case, imagine what life would be like on such a world, and ask yourself whether humans could adapt to it. The guess here is that they could, but the impetus for developing a migratory pattern of development would be profound.

The Kepler-186f Image

Spurring these thoughts was an email from Thomas Barclay, a research scientist working on the Kepler mission at NASA Ames. Tom writes the excellent Planet Hunter blog, which he used several days ago to explain How we designed the Kepler-186f artists concept image that I wrote about on Monday. I seldom post the same image several days running, but today is an exception since I want to relate that image to the entire issue of how we visualize alien planets. Here it is again:

quintana4_2

As I mentioned on Monday, this view — created by Tim Pyle and Robert Hurt (JPL/Caltech) — is a splendid piece of work, but you’ll recall that I wondered whether it wasn’t a bit too realistic, given that the public audience contains many who would assume we actually have this level of detailed information about the planet. The flip side of that question is to note how much care went into the image and what decisions were made given that we really know little beyond the size of the planet, the size and temperature of the star, and the distance between planet and star.

What I hadn’t really noticed was the star, Kepler-186, itself. It’s a red dwarf, but as you look at the image, you see that it’s much brighter than we might expect. What we know about Kepler-186 is that its temperature is about 3800 Kelvin. Now if you go to work on the spectrum of various star types and study the response of the human eye — check What color are the stars? for more — you’ll find that in the absence of any atmosphere, Kepler-186 would be yellow/orange in color. Tom writes that the team chose to make it a bit more orange in this image that it would actually appear to the eye, to get across the fact that the star is not truly like our G-class Sun.

Now look at the planet itself, which shows continents that are yellow and oceans in blue/grey. The ice caps as well as the clouds have an orange hue. Why these choices? Let me quote Tom on this:

This star emits very little blue light which we represented by making the sea a dull grey/blue color. Ice and clouds Mie scatter light [see this Wikipedia entry on Mie scattering] which is fairly uniform across all wavelengths hence clouds and ice appear the same color as the star. Then we come to the color of the continents – we had fun with this one. When we were designing the image Elisa Quintana found an article by Nancy Kiang titled The Color of Plants on Other Worlds. Nancy is a scientist based at NASA Ames (she moved to Ames from GISS the week after we talked to her, small world heh!) who works with the Virtual Planetary Laboratory. We called her up and chatted about what colors plants might be on planets orbiting cool stars. While this is a very complex issue involving evolution of photosynthesis, she recommended a dark yellow/green color as a potential color for alien planet life on this world.

And reminding us how little we know about this planet, Tom goes on to note that the artists chose to depict the planet as a bit colder than Earth, realizing that we have no knowledge about its atmosphere, which will have a great deal to say about its temperature. This was an educated guess to show a planet with prominent ice caps and plant life in the equatorial regions. It’s based on the understandable analogy with the Earth, which has the water, continents and clouds we see in this image translated to a hypothetical planetary body around another star.

So am I being too fussy in talking about people getting the wrong idea from such images? Maybe so, in the sense that along with the excellent artwork, we have to be careful to get the message out about what we actually know about the world. I think Tom gets it right when he says “Hopefully this image provides a nice tool to explain what might be the same and what might be different between this planet and Earth.” Making those explanations is a job for those of us who try to communicate the findings of our exoplanet hunters to the general public, and it’s something we need to do well to separate the genuine excitement of the work from the frequent media hype.

tzf_img_post

Enter the ‘Anti-Transit’

Gravitational lensing is a technique rich enough to help us study not only distant galaxies but exoplanets around stars in our own Milky Way. As gravity warps space and time, light passing near a massive object takes the shortest route, from our perspective seeming to be bent by the gravitational field. Inside the Milky Way, such effects are referred to as ‘microlensing,’ capable of magnifying the light of a more distant object and sometimes revealing the presence of an unseen planet around the intervening star. Now we have a Kepler find with implications for binary stars.

Working with Eric Agol at the University of Washington, graduate student Ethan Kruse has discovered a ‘self-lensing’ white dwarf eclipsing binary system. He made the find while looking for transits in the Kepler data, the signatures of planets crossing in front of their stars as seen from Earth. KOI-3278 turned out to have an unusual signal, says Kruse:

“I found what essentially looked like an upside-down planet. What you normally expect is this dip in brightness, but what you see in this system is basically the exact opposite — it looks like an anti-transit.”

koi3278_cover16

In other words, a transiting planet causes a dip in the overall light of the star that shows up in the well known lightcurves that have flagged the presence of so many Kepler planets. Kruse was seeing not a dip but a surge in brightness, the apparent result of movement within this binary star system. 2600 light years away in the constellation Lyra, KOI-3278 is now known to be made up of two stars with an orbital period of 88.18 days, one of them a white dwarf, separated by about 70 million kilometers. The brightness surge is the white dwarf’s lensing effect upon the star it passes in front of as we view the system. The lensing effect allows the mass of the white dwarf to be measured as roughly 63 percent the mass of our Sun.

Image: An image of the Sun used to simulate what the sun-like star in a self-lensing binary star system might look like. Credit: NASA.

It was about a year ago that Philip Muirhead (Caltech) and colleagues published their own findings, likewise based on Kepler data, of a white dwarf being orbited by an M-class dwarf that was, although larger, less massive than the white dwarf it circled. KOI-256 looked at first glance to show the signature of a gas giant planet eclipsing the red dwarf, but radial velocity follow-up studies using the Hale instrument at Palomar Observatory demonstrated that the intervening object was a white dwarf. The KOI-256 data showed the same brightening effects that Kruse found with KOI-3278, although the microlensing in the former was not nearly as powerful.

In both cases, refined mass measurements of the white dwarf have followed, as well as more accurate analysis of the mass and temperature of both stars. Kruse and Agol think the effect can be used in follow-up observations to reveal the white dwarf’s size, and have applied for time on the Hubble Space Telescope to study the system in greater detail. We may or may not find more systems like this in the Kepler data, but the KOI-3278 discovery gives us yet another way to use the extremely subtle effects of microlensing. In this case, the lensing is a repeatable phenomenon as the two stars orbit each other, not the case with most microlensing events.

The paper is Kruse and Agol, “KOI-3278: A Self-Lensing Binary Star System,” Science Vol. 344, No. 6181 (18 April 2014), pp. 275-277 (abstract). The KOI-256 paper is Muirhead et al., “Characterizing the Cool KOIs. V. KOI-256: A Mutually Eclipsing Post-Common Envelope Binary,” The Astrophysical Journal Vol. 767, No. 2 (2013), 111 (abstract).

tzf_img_post

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives