Planets orbiting two stars have been found, but not all that many of them. We’re talking here about a planet that orbits both stars of a close binary system, and thus far, although we’ve confirmed over 6,000 exoplanets, we’ve only found 14 of them in this configuration. Circumbinary planets are odd enough to make us question what it is we don’t know about their formation and evolution that accounts for this. Now a paper from researchers at UC-Berkeley and the American University of Beirut probes a mechanism Einstein would love. At play here are relativistic effects, having to do with the fact that, as Einstein explained, intense gravitational fields have detectable effects upon the stars’ orbits. This is hardly news, as it was the precession of Mercury in the sky that General Relativity first predicted. The planet’s orbit could be seen to precess (shift) by 43 arcseconds per century more than was expected by Newtonian mechanics. Einstein showed in 1915 that spacetime curvature could...
A New Tool for Exoplanet Detection and Characterization
It’s been apparent for a long time that far more astronomical data exist than anyone has had time to examine thoroughly. That’s a reassuring thought, given the uses to which we can put these resources. Ponder such programs as Digital Access to a Sky Century at Harvard (DASCH), which draws on a trove of over half a million glass photographic plates dating back to 1885. The First and Second Palomar Sky Surveys (POSS-1 and POSS-2) go back to 1949 and are now part of the Digitized Sky Survey, which has digitized the original photographic plates. The Zwicky Transient Facility, incidentally, uses the same 48-inch Samuel Oschin Schmidt Telescope at Palomar that produced the original DSS data. There is, in short, plenty of archival material to work with for whatever purposes astronomers want to pursue. You may remember our lengthy discussion of the unusual star KIC 8462852 (Boyajian’s Star), in which data from DASCH were used to explore the dimming of the star over time, the source of...
Holography: Shaping a Diffractive Sail
One result of the Breakthrough Starshot effort has been an intense examination of sail stability under a laser beam. The issue is critical, for a small sail under a powerful beam for only a few minutes must not only survive the acceleration but follow a precise trajectory. As Greg Matloff explains in the essay below, holography used in conjunction with a diffractive sail (one that diffracts light waves through optical structures like microscopic gratings or metamaterials) can allow a flat sail to operate like a curved or even round one. I’ll have more on this in terms of the numerous sail papers that Starshot has spawned soon. For today, Greg explains how what had begun as an attempt to harness holography for messaging on a deep space probe can also become a key to flight operations. The Alpha Cubesat now in orbit is an early test of these concepts. The author of The Starflight Handbook among many other books (volumes whose pages have often been graced by the artwork of the gifted C...
Shelter from the Storm
The approaching storm will almost certainly cause power outages that will make it impossible to post here. If this occurs, you can be sure that I'll get any incoming messages posted as soon as I can get back online. Please continue to post comments as usual and let's cross our fingers that the storm is less dangerous than it appears.
Cellular Cosmic Isolation: When the Universe Seeds Life but Civilizations Stay Silent
So many answers to the Fermi question have been offered that we have a veritable bestiary of solutions, each trying to explain why we have yet to encounter extraterrestrials. I like Leo Szilard’s answer the best: “They are among us, and we call them Hungarians.” That one has a pedigree that I’ll explore in a future post (and remember that Szilard was himself Hungarian). But given our paucity of data, what can we make of Fermi’s question in the light of the latest exoplanet findings? Eduardo Carmona today explores with admirable clarity a low-drama but plausible scenario. Eduardo teaches film and digital media at Loyola Marymount University and California State University Dominguez Hills. His work explores the intersection of scientific concepts and cinematic storytelling. This essay is adapted from a longer treatment that will form the conceptual basis for a science fiction film currently in development. Contact Information: Email: eduardo.carmona@lmu.edu by Eduardo Carmona MFA In...
Pandora: Exoplanets at Multiple Wavelengths
Sometimes we forget how overloaded our observatories are, both in space and on the ground. Why not, for example, use the James Webb Space Telescope to dig even further into TRAPPIST-1’s seven planets, or examine that most tantalizing Earth-mass planet around Proxima Centauri? Myriad targets suggest themselves for an instrument like this. The problem is that priceless assets like JWST not only have other observational goals, but more tellingly, any space telescope is overbooked by scientists with approved observing programs. Add to this the problem of potentially misleading noise in our data. Thus the significance of Pandora, lofted into orbit via a SpaceX Falcon 9 on January 11, and now successful in returning robust signals to mission controllers. One way to take the heat off overburdened instruments is to create much smaller, highly specialized spacecraft that can serve as valuable adjuncts. With Pandora we have a platform that will monitor a host star in visible light while also...
Explaining Cloud-9: A Celestial Object Like No Other
Some three years ago, the Five-Hundred Meter Aperture Spherical Telescope (FAST) in Guizhou, China discovered a gas agglomeration that was later dubbed Cloud-9. It’s a cute name, though unintentionally so, as this particular cloud is simply the ninth thus far identified near the spiral galaxy Messier 94 (M94). And while gas clouds don’t particularly call attention to themselves, this one is a bit of a stunner, as later research is now showing. It’s thought to be a gas-rich though starless cloud of dark matter, a holdover from early galaxy formation. Scientists are referring to Cloud-9 as a new type of astronomical object. FAST’s detection at radio wavelengths has been confirmed by the Green Bank Telescope and the Very Large Array in the United States. The cloud has now been studied by the Hubble telescope’s Advanced Camera for Surveys, which revealed its complete lack of stars. That makes this an unusual object indeed. Alejandro Benitez-Llambay (Milano-Bicocca University, Milan) is...
Astrobiology: What Our Planet Can Teach Us
Will 2026 be the year we detect life elsewhere in the universe? The odds seem against it, barring a spectacular find on Mars or an even more spectacular SETI detection that leaves no doubt of its nature. Otherwise, this new year will continue to see us refining large telescopes, working on next generation space observatories, and tuning up our methods for biosignature detection. All necessary work if we are to find life, but no guarantee of future success. It is, let’s face it, frustrating for those of us with a science fictional bent to consider that all we have to go on is our own planet when it comes to life. We are sometimes reminded that an infinite number of lines can pass through a single point. And yes, it’s true that the raw materials of life seem plentiful in the cosmos, leading to the idea that living planets are everywhere. But we lack evidence. We have exactly that one data point – life as we know it on our own planet – and every theory, every line we run through it is...

