Centauri Dreams

Imagining and Planning Interstellar Exploration

K2-315b: Tight Orbits and the Joy of Numbers

The newly found planet K2-315b catches the eye because of its 3.14-day orbit, a catch from the K2 extension of the Kepler Space Telescope mission that reminds us of a mathematical constant. As I’m prowling through David Berlinski’s Infinite Ascent (Modern Library, 2011), a quirky and quite lively history of mathematics at the moment, the references to ‘pi in the sky’ that I’m seeing in coverage of the discovery are worth a chuckle. Maybe the Pythagoreans were right that everything is number. Pythagoras would have loved K2-315b and would have speculated on its nature.

After all, as Berlinski notes about Pythagoras (ca. 570 to ca. 490 BCE) and his followers, they were devoted to what he calls ‘a higher spookiness”:

The Pythagoreans never succeeded in explaining what they meant by claiming that number is the essence of all things. Early in the life of the sect, they conjectured that numbers might be the essence of all things because quite literally “the elements of numbers were the elements of all things.” In this way, Aristotle remarks, “they constructed the whole heaven out of numbers.” This view they could not sustain. Aristotle notes dryly that “it is impossible that [physical] bodies should consist of numbers,” if only because physical bodies are in motion and numbers are not. At some time, the intellectual allegiances of the sect changed and the Pythagoreans began to draw a most Platonic distinction between the world revealed by the senses and the world revealed by the intellect.

And we’re off into weird metaphysics, down a historical rabbit hole. But enough of the Pythagorean buzz with numbers remains that to this day we love the odd coincidence. Hey, K2-315b is the 315th planetary system discovered inside the K2 data, a near miss from 314. MIT’s Julien de Wit, a co-author of the paper on this discovery, points out that “everyone needs a bit of fun these days,” and it’s a reference to the paper’s playful title: “? Earth: A 3.14 day Earth-sized Planet from K2’s Kitchen Served Warm by the SPECULOOS Team.” MIT graduate student Prajwal Niraula is lead author of the paper, published in the Astronomical Journal.

Image: Scientists at MIT and elsewhere have discovered an Earth-sized planet that zips around its star every 3.14 days. Credit: NASA Ames/JPL-Caltech/T. Pyle, Christine Daniloff, MIT.

What we know about K2-315b is that its radius is about 0.95 that of Earth and, importantly, that it orbits a cool, low-mass star about a fifth of the Sun’s size. Its mass has yet to be determined, but as MIT press materials point out, its surface temperature is around 450 K, which is about where you want your oven to be if you’re baking an actual pie. There is little likelihood of any lifeforms on this planet capable of groaning at puns, though I do think the discovery is helpful because it’s yet another case of an ultracool dwarf star that may be a target for the James Webb Space Telescope. Large transit depths make for interesting studies of planetary atmospheres.

I try to keep up with SPECULOOS, another wonderful acronym: Search for habitable Planets EClipsing ULtra-cOOl Stars. Here we’re dealing with four 1-meter telescopes at Chile’s Paranal Observatory in the Atacama Desert, and a more recently included fifth instrument called Artemis in Tenerife, Spain. The observing effort is led by Michael Gillon (University of Liège, Belgium) and conducted in collaboration with various institutions including MIT and the University of Bern, along with the Canary Islands Institute of Astrophysics and the European Southern Observatory.

Image: The SPECULOOS project aims to detect terrestrial planets eclipsing some of the smallest and coolest stars of the solar neighborhood. This strategy is motivated by the unique possibility to study these planets in detail with future giant observatories like the European Extremely Large Telescope (E-ELT) or the James Webb Space Telescope (JWST). The exoplanets discovered by SPECULOOS should thus provide mankind with an opportunity to study the atmosphere of extrasolar worlds similar in size to our Earth, notably to search for traces of biological activity. Credit: SPECULOOS.

The K2-315b work spanned several months of K2 observation from 2017 in which 20 transit signatures turned up with a repetition of 3.14 days. At this point, closer examination relied upon tightening the transit time even further, as co-author Benjamin Rackham points out:

“Nailing down the best night to follow up from the ground is a little bit tricky. Even when you see this 3.14 day signal in the K2 data, there’s an uncertainty to that, which adds up with every orbit.”

Fortunately, Rackham had developed a forecasting algorithm to pin the transits down, and subsequent observations in February of 2020 with the SPECULOOS telescopes nailed three transits, one from Artemis in Spain and the other two from the Paranal instruments. The paper points out that differences in atmospheric “mean molecular mass, surface pressure, and/or
cloud/haze altitude will strongly affect the actual potential of a planet for characterization,” with ramifications for the study even of promising worlds like those circling TRAPPIST-1.

Nonetheless, K2-315b (referred to in the K2 data as EPIC 249631677) looks intriguing enough for JWST observations to be considered:

With an estimated radial velocity semi-amplitude of 1.3 m s?1 (assuming a mass comparable to that of Earth), the planet could be accessible for mass measurements using modern ultra-precise radial velocity instruments. Such possibilities and a ranking amongst the 10 best-suited Earth-sized planets for atmospheric study, EPIC 249631677 b will therefore play an important role in the upcoming era of comparative exoplanetology for terrestrial worlds. It will surely be a prime target for the generation of observatories to follow JWST and bring the field fully into this new era.

Note that reference to ‘comparative exoplanetology.’ Not all exoplanets singled out for atmospheric characterization are going to be ‘habitable’ in the sense of life as we know it. After all, we began using transmission spectroscopy to study atmospheres by working with ‘hot Jupiters’ like HD 209458b. We learn as we go, and firming up our methods by studying small planets around ultracool dwarf stars within 100 parsecs or so is part of the path toward finding a living world.

The paper is Niraula et al., “? Earth: a 3.14-day Earth-sized Planet from K2’s Kitchen Served Warm by the SPECULOOS Team,” Astronomical Journal Vol. 160, No. 4 (21 September 2020). Abstract / Preprint.

tzf_img_post

Radar for a Giant Planet’s Moons

One of my better memories involving space exploration is getting the chance to be at the Jet Propulsion Laboratory to see the Mars rovers Spirit and Opportunity just days before they were shipped off to Florida for their eventual launch. Being near an object that, though crafted by human hands, is about to be a presence on another world is an unusual experience, one that made me reflect on artifacts from deep in the human past and their excavation by archaeologists today. Will future humans one day recover our early robotic explorers?

That reflection was prompted by news from JPL that engineers have delivered the key elements of a critical ice-penetrating radar instrument for the European Space Agency’s mission to three of Jupiter’s icy moons. JUICE — JUpiter ICy moons Explorer — is scheduled for a launch in 2022, with plans to orbit Jupiter for three years, involving multiple flybys of both Europa and Callisto, with eventual orbital insertion at Ganymede. Analyses of the interiors as well as surfaces of the three moons should vastly improve our knowledge of their composition.

Image: NASA’s Jet Propulsion Laboratory built and shipped the receiver, transmitter, and electronics necessary to complete the radar instrument for Jupiter Icy Moons Explorer (JUICE), the ESA (European Space Agency) mission to explore Jupiter and its three large icy moons. In this photo, shot at JPL on April 27, 2020, the transmitter undergoes random vibration testing to ensure the instrument can survive the shaking that comes with launch. Credit: NASA/JPL-Caltech.

Here again we’re looking at something in the hands of humans on Earth that will one day move out beyond our orbit, in this case to the moons of our system’s largest planet, sending back priceless data. On a practical level, this is what people in the space exploration business do. On the level of sheer human response, my own at least, looking at how we build our spacecraft puts a bit of a chill up my spine, the good kind of chill that signals being in the presence of something profound, something caught up in what seems a hard-wired human need to explore.

The words “ice-penetrating radar” should resonate among all of those who wonder about the ocean under the ice at Europa. But of course we also have reason to believe that both Ganymede and Callisto have oceans whose depths we have yet to measure. Getting a sense for how thick the ice is on these worlds will be part of what the JUICE mission’s RIME instrument will, we can hope, deliver. RIME — Radar for Icy Moon Exploration — is said to have the capability of sending out radio waves that can penetrate up to 10 kilometers deep, reflecting off subsurface features and helping us figure out the thickness of the ice.

Image: The Radar for Icy Moon Exploration, or RIME, instrument is a collaboration by JPL and the Italian Space Agency (ASI) and is one of ten that will fly aboard JUICE. This photo, shot at JPL on July 23, 2020, shows the transmitter as it exits a thermal vacuum chamber. The test is one of several designed to ensure the hardware can survive the conditions of space travel. The thermal chamber simulates deep space by creating a vacuum and by varying the temperatures to match those the instrument will experience over the life of the mission. Credit: NASA/JPL-Caltech.

And as we all know, work on anything these days is complicated by COVID-19, with many JPL employees forced to work remotely, and necessary delays to equipment testing including vibration, shock and thermal vacuum tests to ensure the equipment is ready for the deep space environment. The engineers returning to work after the delay under new safety protocols faced a tight schedule, but they made it work. JPL delivered the transmitter and receiver for RIME along with electronics necessary for communicating with its antenna.

All this occurs as part of a collaboration between JPL and the Italian Space Agency (ASI). The RIME instrument is led by principal investigator Lorenzo Bruzzone (University of Trento, Italy). As to JPL’s role under trying pandemic conditions, co-principal investigator Jeffrey Plaut says:

“I’m really impressed that the engineers working on this project were able to pull this off. We are so proud of them, because it was incredibly challenging. We had a commitment to our partners overseas, and we met that – which is very gratifying.”

Gratifying indeed, and a reminder that along with JUICE, we can also anticipate NASA’s Europa Clipper, set to launch some time in the mid-2020s. Europa Clipper should arrive about the same time as JUICE, and will perform multiple flybys of Europa. Will we be able to determine the thickness of Europa’s frozen surface from the combined data of both missions? A relatively thin crust would make for the possibility of eventual penetration by instruments for a look at what lies beneath, but a shell of 15 to 25 kilometers in thickness would call for other strategies.

Image: The European Space Agency (ESA) Jupiter Icy Moons Explorer (JUICE) spacecraft explores the Jovian system in this illustration. Credit: ESA/NASA/ATG medialab/University of Leicester/DLR/JPL-Caltech/University of Arizona.

tzf_img_post

On White Dwarf Planets as Biosignature Targets

So often a discovery sets off a follow-up study that strikes me as even more significant in practical terms. This is not for a moment to downplay the accomplishment of Andrew Vanderburg (University of Wisconsin – Madison) and team that discovered a planet in close orbit around a white dwarf. This is the first time we’ve found a planet that has survived its star’s red giant phase and remains in orbit around the remnant, and quite a tight orbit at that. Previously, we’ve had good evidence only of atmospheric pollution in such stars, indicating infalling material from possible asteroids or other objects during the primary’s cataclysmic re-configuration.

The white dwarf planet, found via data gathered from TESS (Transiting Exoplanet Survey Satellite) and the Spitzer Space Telescope, makes for quite a discovery. But coming out of this work, I also love the idea of studying such a world with tools we’re likely to have soon, such as the James Webb Space Telescope, and on that score, Lisa Kaltenegger (Carl Sagan Institute, Cornell University), working with Ryan MacDonald and including Vanderburg in the team, have shown us how JWST can identify chemical signatures in the atmospheres of possible Earth-like planets around white dwarf stars. Assuming we find such, and I suspect we will.

The planet at the white dwarf WD 1856+534 is anything but Earth-like. It’s running around the star every 34 hours, which means it’s on a pace 60 times faster than Mercury orbits the Sun. The planet here is also the size of Jupiter, and what a system we’ve uncovered — the new world orbits a star that is itself only 40 percent larger than Earth (imagine the transit depth possible with white dwarfs transited by a gas giant!) In this planetary system, the planet we’ve detected is about deven times larger than its primary. Says Vanderburg:

“WD 1856 b somehow got very close to its white dwarf and managed to stay in one piece. The white dwarf creation process destroys nearby planets, and anything that later gets too close is usually torn apart by the star’s immense gravity. We still have many questions about how WD 1856 b arrived at its current location without meeting one of those fates.”

Image: In this illustration, WD 1856b, a potential Jupiter-size planet, orbits its dim white dwarf star every day-and-a-half. WD 1856 b is nearly seven times larger than the white dwarf it orbits. Astronomers discovered it using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and now-retired Spitzer Space Telescope. Credit: NASA GSFC.

So on the immediate question of WD 1856 b, let’s note that we have a serious issue with explaining how the planet got to be this close to the white dwarf in the first place. White dwarfs form when stars like the Sun swell into red giant status as they run out of fuel, a phase in which 80 percent of the star’s mass is ejected, leaving a hot core — the white dwarf — behind. Anything on relatively close orbit would be presumably swallowed up in the stellar expansion phase.

Which is why Vanderburg’s team believes the planet probably formed fully 50 times farther away from its present location, later moving inward perhaps through interactions with other large bodies close to the planet’s original orbit, with its orbit circularizing as tidal forces dissipated. Such instabilities could bring a planet inward, as could other scenarios involving the red dwarfs G229-20 A and B in this triple star system, although the paper plays down this idea, as well as the notion of a rogue star acting as a perturber. Other Jupiter-like planets, presumably long gone, seem to be the best bet to explain this configuration.

From the paper:

…a more probable formation history is that WD 1856 b was a planet that underwent dynamical instability. It is well established that when stars evolve into white dwarfs, their previously stable planetary systems can undergo violent dynamical interactions that excite high orbital eccentricities. We have confirmed with our own simulations that WD 1856 b-like objects in multi-planet systems can be thrown onto orbits with very close periastron distances. If WD 1856 b were on such an orbit, the orbital energy would have rapidly dissipated, owing to tides raised on the planet by the white dwarf. The final state of minimum energy would be a circular, short-period orbit. The advanced age of WD 1856 (around 5.85 Gyr) gives plenty of time for these relatively slow (of the order of Gyr) dynamical processes to take place. In this case, it is no coincidence that WD 1856 is one of the oldest white dwarfs observed by TESS.

Did you catch that reference to the white dwarf’s age? The 5.85 billion year frame gives ample opportunity for such orbital adjustments to take place, winding up with the observed orbit. Or perhaps we’re dealing with interactions with a debris disk around the star, as co-author Stephen Kane (UC-Riverside, and a member of the TESS science team) hypothesizes:

“In this case, it’s possible that a debris disc could have formed from ejected material as the star changed from red giant to white dwarf. Or, on a more cannibalistic note, the disc could have formed from the debris of other planets that were torn apart by powerful gravitational tides from the white dwarf. The disc itself may have long since dissipated.”

But back to Lisa Kaltenegger, lead author of a paper in Astrophysical Journal Letters probing whether an exposed stellar core — a white dwarf — would be workable as a target for the JWST, in which case we would like to look at planetary atmospheres to probe for the possibility of biosignatures. Here the news is good, for Kaltenegger believes that such detections would be possible, assuming rocky planets exist around these stars. WD 1856 b gives hope that such a world could exist in the white dwarf’s habitable zone for a period longer than the time it took for life to develop on Earth. The implications are intriguing:

“What if the death of the star is not the end for life?” Kaltenegger said. “Could life go on, even once our sun has died? Signs of life on planets orbiting white dwarfs would not only show the incredible tenacity of life, but perhaps also a glimpse into our future.”

Image: In newly published research, Cornell researchers show how NASA’s upcoming James Webb Space Telescope could find signatures of life on Earth-like planets orbiting burned-out stars, known as white dwarfs. Credit: Jack Madden/Carl Sagan Institute.

The Kaltenegger team used methods developed to study gas giant atmospheres and combined them with computer models configured to apply the technique to small, rocky white dwarf planets. The researchers found that JWST, when observing an Earth-class planet around a white dwarf, could detect carbon dioxide and water with data from as few as 5 transits. According to co-lead author Ryan MacDonald, it would take a scant two days of observing time with JWST to probe for the classic biosignature gases ozone and methane. Adds MacDonald:

“We know now that giant planets can exist around white dwarfs, and evidence stretches back over 100 years showing rocky material polluting light from white dwarfs. There are certainly small rocks in white dwarf systems. It’s a logical leap to imagine a rocky planet like the Earth orbiting a white dwarf.”

So we have a possible target we’ll want to add into the exoplanet mix when it comes to nearby white dwarf systems. WD 1856 is about 80 light years out in the direction of Draco. The white dwarf formed over 5 billion years ago, as noted in the paper, but the age of the original Sun-like star may take us back as much as 10 billion years. The post red giant phase allows plenty of time for orbital adjustment, drawing rocky worlds inward and circularizing their orbit. Will we find such planets in this setting in the near future? The hunt for such will surely intensify.

The paper is Vanderburg et al., “A giant planet candidate transiting a white dwarf,” Nature 585 (16 September 2020), 363-367 (abstract). The Kaltenegger paper is “The White Dwarf Opportunity: Robust Detections of Molecules in Earth-like Exoplanet Atmospheres with the James Webb Space Telescope,” Astrophysical Journal Letters Vol. 901, No. 1 (16 September 2020). Abstract.

tzf_img_post

SETI and Altruism: A Dialogue with Keith Cooper

Keith Cooper’s The Contact Paradox is as thoroughgoing a look at the issues involved in SETI as I have seen in any one volume. After I finished it, I wrote to Keith, a Centauri Dreams contributor from way back, and we began a series of dialogues on SETI and other matters, the first of which ran here last February as Exploring the Contact Paradox. Below is a second installment of our exchanges, which were slowed by external factors at my end, but the correspondence continues. What can we infer from human traits about possible contact with an extraterrestrial culture? And how would we evaluate its level of intelligence? Keith is working on a new book involving both the Cosmic Microwave Background and quantum gravity, the research into which will likewise figure into our future musings that will include SETI but go even further afield.

Keith, in our last dialogue I mentioned a factor you singled out in your book The Contact Paradox as hugely significant in our consideration of SETI and possible contact scenarios. Let me quote you again: “Understanding altruism may ultimately be the single most significant factor in our quest to make contact with other intelligent life in the Universe.”

I think this is exactly right, but the reasons may not be apparent unless we take the statement apart. So let’s start today by talking about altruism before we explore the question of ‘deep time’ and how our species sees itself in the cosmos. I think we have ramifications here for how we deal not only with extraterrestrial contact but issues within our own civilization.

I’m puzzled by the seemingly ready acceptance of the notion that any extraterrestrial civilization will be altruistic or it could not have survived. Perhaps it’s true, but it seems anthropocentric given our lack of knowledge of any life beyond Earth. What, then, did you mean with your statement, and why is understanding altruism a key to our perception of contact?

  • Keith Cooper

I think so much that is integral to SETI comes down to our assumptions about altruism. How often do we hear that an older extraterrestrial society will be altruistic, as though it’s the end result of some kind of evolutionary trajectory. But there’s several problems with this. One is that the person making such claims – usually an astrophysicist straying into areas outside their field of expertise – is often conflating ‘altruism’ with ‘being nice’.

And sure, maybe aliens are nice. I kind of get the logic, even though it’s faulty. The argument is that if they are still around then they must have abandoned war long ago, otherwise they would have destroyed themselves by now, ergo they must be peaceful.

And it’s entirely possible, I suppose, that a civilisation may have developed in that direction. In The Better Angels of Our Nature, Steven Pinker attempted to argue that our civilization is becoming more peaceable over time, although Pinker’s analysis and conclusions have been called into question by numerous academics.

  • Paul Gilster

I hope so. I think the notion is facile at best.

  • Keith Cooper

It’s what human societies should always aim for, I truly believe that, but whether we can achieve it or not is another question. When it comes to SETI, we seem to home in on the most simplistic definitions of what an extraterrestrial society might be like – ‘they’ve survived this long, they must be peaceful’. A xenophobic civilization might be at peace with its own species, but malevolent towards life on other planets. A planet could be at peace, but that peace could be implemented by some 1984-style dystopian dictatorship where nobody is free. Neither of which is particularly ‘nice’, and we could think of many other scenarios, too.

Nevertheless, this myth of wise, kindly aliens has grown up around SETI – that was the expectation, 60 years ago, that ET would be pouring resources into powerful beacons to make it easy for us to detect them. To transmit far and wide across the Galaxy, and to maintain those transmissions for centuries, millennia, maybe even millions of years, would require huge amounts of resources. When we consider that the aliens may not even know for sure whether they share the Universe with other life, it’s a huge gamble on their part to sacrifice so much time and energy in trying to communicate with others in the Universe.

If we look at what altruism really is, and how that may play into the likelihood that ET will want to beam messages across the Galaxy given the cost in time and energy, then it poses a big problem for SETI. ET really needs to help us out – to display a remarkable degree of selfless altruism towards us – by plowing all those resources into transmitting signals that we’ll be able to detect.

One of the forms that altruism can take in nature is kin selection. We can see how this has evolved: lifeforms want to ensure that their genes are passed on to later generations, so a parent will act to protect and give the greatest possible advantage to their child, or nieces and nephews. That’s a form of altruism predicated by genes, not ethics. Unless some form of extreme panspermia has been at play, alien life would not be our kin, so they would be unlikely to show us altruistic behaviour of this type.

  • Paul Gilster

But we haven’t exhausted all the forms altruism might take. Is there an expectation of mutual benefit that points in that direction?

  • Keith Cooper

Okay, so what about quid pro quo? That’s a form of reciprocal altruism. Consider, though, the time and distance separating the stars. It could take centuries or millennia for a message to reach a destination, and there’s no guarantee that anyone is going to hear that message, nor that they will send a reply. That’s a long time to wait for a return on an investment, if there even is a return. Why plow so many resources into transmitting if that’s the case? What’s in it for them?

So if kin selection and reciprocal altruism are not really tailored for interstellar communication, then it seems more unlikely that we will hear from aliens. Of course, there is always the possibility of exceptions to the rule, one-off reasons why a society might wish to broadcast its existence. Maybe ET wants to transmit a religious gospel to the stars to convert us all. Maybe they are about to go extinct and want to send one last hurrah into the Universe. But these would not be global reasons, and we shouldn’t expect alien societies to make it easy for us to discover them.

  • Paul Gilster

Good point. Why indeed should they want us to discover them? I can think of reasons a society might decide to broadcast its existence to the stars, though I admit that it’s a bit of a strain. But aliens are alien, right? So let’s assume some may want to do this. I like your mention of reciprocal altruism, as it’s conceivable that an urge to spread knowledge, for example, might result in a SETI beacon of some kind that points to an information resource, the fabled Encyclopedia Galactica. What a gorgeous dream that something like that might be out there.

Curiosity leads where curiosity leads. I wonder if it’s a universal trait of intelligence?

  • Keith Cooper

It’s interesting that you describe the Encyclopedia Galactica as a ‘dream’, because I think that’s exactly what it is, a fantasy that we’ve imagined without any strong rationale other than falling back on this outdated idea that aliens are going to act with selfless altruism. As David Brin argues, if you pump all your knowledge into space freely, what do you have left to barter with? And yet it is expectations such as receiving an Encyclopedia Galactica that still drive SETI and influence the kinds of signals that we search for. I really do think SETI needs to move on from this quaint idea. But I digress.

  • Paul Gilster

It’s certainly worth keeping up the SETI effort just to see what happens, especially when it’s privately funded. But I want to circle back around. I’ve always had an interest in what the general public’s reaction to the idea of extraterrestrial civilization really is. In the 16 years that I’ve been writing about this and talking to people, I’ve found a truly lopsided percentage that believe as a matter of course that an advanced civilization will be infinitely better than our own. This plays to a perceived disdain for human culture and a faith in a more beneficent alternative, even if it has to come from elsewhere to set right our fallen nature.

Put that way, it does sound a bit religious, but so what — I’m talking about how human beings react to an idea. Humans construct narratives, some of them scientific, some of them not.

I’m also talking about the general public, not people in the interstellar community, or scientists actively working on these matters. As you would imagine with COVID about, I’m not making many talks these days, but when I was fairly active, I’d always ask audiences of lay people what they thought of intelligent aliens. The reaction was almost always along two lines: 1) The idea used to seem crazy, but now we know it’s not. And 2) it would be something like an European Renaissance all over again if we made contact, because they would have so much to teach us.

A golden age, with its Dantes and Shakespeares and Leonardos. Or think of the explosion of Chinese culture and innovation in the Tang Dynasty, or Meiji Japan, all this propelled by the infusion not of recovered ancient literature and teaching, as in the European example, but materials discovered in the evidently limitless databanks of the Encyclopedia Galactica.

I ran into these audience reactions so frequently in both talks to interested audiences and just conversations among neighbors and friends that I had to ask what was propelling the Hollywood tradition of scary movies about alien invasion? What about Independence Day, with its monstrous ships crushing the life out of our planet? So I would ask, if you believe all this altruistic stuff, why do you keep going to these sensational movies of death and destruction?

The answer: Because people think they’re fun. They’re a good diversion, a comic book tale, a late night horror movie where getting scared is the point. Whole film franchises are built around the idea that fear is addictive when experienced within the cocoon of a home or theater. Thus the wave of horror fiction that has been so prominent in recent years. It’s because people like being scared, and the reason for that goes a lot deeper into psychiatry than I would know how to go. I admit I may not believe in Cthulhu, but I love going to Dunwich with H. P. Lovecraft.

Keith, as we both know — and you, as the author of The Contact Paradox would know a lot more about this than I do — there is an active lobby against messaging to the stars: METI. I’ve expressed my own opposition to METI on many an occasion in these pages, and the discussion has always been robust and contentious, with the evidently minority position being that we should hold back on such broadcasts unless we reach international consensus, and the majority position being that it doesn’t matter because sufficiently intelligent aliens already know about us anyway.

I don’t want to re-litigate any of that here. Rather, I just want to note that if the anti-METI position gets loud pushback in the interstellar community, it gets even louder pushback among the general public. In my talks, bringing up the dangers of METI invariably causes people to accuse me of taking films like Independence Day too seriously. From what I can see from my own experience, most people think ETI may be out there but assume that if it ever shows up on our doorstep, it will represent a refined, sophisticated, and peaceful culture.

I don’t buy that idea, but I’m so used to seeing it in print that I was startled to read this in James Trefil and Michael Summers’ recent book Imagined Life. The two first tell a tale:

Two hikers in the mountains encounter an obviously hungry grizzly bear. One of the hikers starts to shed his backpack. The other says, “What are you doing? You can’t run faster than that bear.”

“I don’t have to run faster than the bear — I just have to run faster than you.”

Natural selection doesn’t select for bonhomie or moral hair-splitting. The one whose genes will survive in the above encounter is the faster runner. Trefil and Summers go on:

So what does this tell us about the types of life forms that will develop on Goldilocks worlds? We’re afraid that the answer isn’t very encouraging, for the most likely outcome is that they will probably be no more gentle and kind than Homo Sapiens. Looking at the history of our species and the disappearance of over 20 species of hominids that have been discovered in the fossil record, we cannot assume we will encounter an advanced technological species that is more peaceful than we are. Anyone we find out there will most likely be no more moral or less warlike that we are…

That doesn’t mean any ETI we find will try to destroy us, but it does give me pause when contemplating the platitudes of the original The Day the Earth Stood Still movie, for example. It’s so easy to point to our obvious flaws as humans, but the more likely encounter with ETI, if we ever meet them face to face, will probably be deeply enigmatic and perhaps never truly understood. I also argue that there is no reason to assume that individual members of a given species will not have as much variation between them as do individual humans.

It’s a long way from Francis of Assisi to Joseph Goebbels, but both were human. So what happens, Keith, if we do get a SETI signal one day. And then, a few days later, another one that says, “Disregard that first message. The one you want to talk to is me?”

  • Keith Cooper

I’m hesitant to rely too closely on comparisons with ourselves and our own evolution, since ultimately we are just a sample of one, and we could be atypical for all we know. I see what Trefil and Summers are saying, but equally I could imagine a world, perhaps with a hostile environment, where species have to work together to survive. Instead of survival of the fittest, it becomes survival of those who cooperate. And suppose intelligent life evolves to be post-biological. What role do evolutionary hangovers play then?

I think the most we can say is that we don’t know, but that for me is enough of a reason to be cautious both about the assumptions we make in SETI, and about the possible consequences of METI.

But you’re right about our flawed assumption that aliens will exist in a monolithic culture. Unless there’s some kind of hive mind or network, there will likely be variation and dissonance, and different members of their species may have different reactions to us.

If we detected two beacons in the same system, I think that would be great! Why? Because it would give us more information about them than a single signal would. Since we will have no knowledge of their language, their culture, their history or their biology, being able to understand their message in even the most general sense is going to be exceptionally difficult.

So, if we detect a signal, we might not be able to decipher it or learn a great deal. But if we detect two different, competing beacons from the same planet, or planetary system, then we will know something about them that we couldn’t know from just one unintelligible signal, which is that they are not necessarily a monolithic culture, and that their society may contain some dissonance, and this may influence how, and if, we respond to their messages.

For me, the name of the game is information. Learn as much about them as we can before we embark on making contact, because the more we know, then the less likely we are to be surprised, or to make a misunderstanding that could be catastrophic.

  • Paul Gilster

Just so. But there, you see, is the reason why I think we have to be a lot more judicious about METI. It’s just conceivable that, to them as well as us, content matters.

But look, I see you’re headed in a direction I wanted to go. If information is the name of the game, then information theory is going to play a mighty role in our investigations. So it’s no surprise that you dwell on the matter in The Contact Paradox. Here we’re in the domain of Claude Shannon at Bell Laboratories in the 1940s, but of course signal content analysis applies across the whole spectrum of information transmittal. Shannon entropy measures disorder in information, which is a way of saying that it lets us analyze communications quantitatively.

Do you know Stephen Baxter’s story “Turing’s Apple?” Here a brief signal is detected by a station on the far side of the Moon, no more than a second-long pulse that repeats roughly once a year. It comes from a source 6500 light years from Earth, and Baxter delightfully presents it as a ‘Benford beacon,’ after the work Jim and Greg Benford have done on the economics of extraterrestrial signaling and the understanding that instead of a strong, continuous signal, we’re more likely to find something more like a lighthouse that sweeps its beam around the galaxy, in this case on the galactic plane where the bulk of the stars are to be found.

Baxter’s story sees the SETI detection as a confirmation rather than a shock, a point I’m glad to see emerging, since I think the idea of extraterrestrial intelligence is widely understood. No great revolution in thought follows, but rather a deepening acceptance of the fact that we’re not alone.

Anyway, in the story, the signal is investigated, six pulses being gathered over six years, with the discovery that this ETI uses something like wavelength division multiplexing, dividing the signal into sections packed with data. Scientists turn to Zipf graphing to tackle the problem of interpretation – as you present this in your book, Keith, this means breaking the message into components and going to work on the relative frequency of appearance of these components. From this they deduce that the signal is packed with information, but what are its elements?

Shannon entropy analysis looks for the relationships between signal elements, so how likely is it that a particular element will follow another particular element? Entropy levels can be deduced – how likely are not just pairs of elements to appear, but triples of elements? In English, for example, how likely is it that we might find a G following an I and an N? Dolphin languages get as high as fourth-order entropy by this analysis, as you know. Humans get up to eighth or ninth. Baxter’s signal analysts come up with a Shannon entropy in the range of 30 for ETI.

Let me quote this bit, because I love the idea:

“The entropy level breaks our assessment routines… It is information, but much more complex than any human language. It might be like English sentences with a fantastically convoluted structure – triple or quadruple negatives, overlapping clauses, tense changes… Or triple entendres, or quadruples.”

We’re in challenging territory here. In the story, ETI is a lot smarter than us, based on Shannon entropy. The presence of this kind of complexity in a signal, in Baxter’s scenario, is evidence that the detected message could not have been meant for us, because if it were, the broadcasting civilization would have ‘dumbed it down’ to make it accessible. Instead, humanity has found a signal that demonstrates the yawning gap between humanity and a culture that may be millions of years old. If we find something like this, it’s likely we would never be able to figure it out.

Would something like this be a message, or perhaps a program? If we did decode it, what would it mean? An ever better question: What might it do? Baxter’s story is so ingenious that I don’t want to give away its ending, but suffice it to say that impersonal forces may fall well outside our conventional ideas of ‘friendly’ vs. ‘hostile’ when it comes to bringing meaning to the cosmos.

But let’s wrap back around to Shannon and Zipf, and the SETI Institute’s Laurance Doyle, to whom you talked as you worked on The Contact Paradox. Doyle told you that communication complexity invariably tells us something about the cultural complexity of the beings that sent the message. And I think the great point that he makes is that the best way to approach a possible signal is by studying how communications systems work right here on Earth. Thus Claude Shannon, who started working out his theories during World War II, gets applied to the question of species intelligence (dolphins vs. humans) and now to hypothetical alien signals.

In a broader sense, we’re exploring what intelligence is. Does intelligence mean technology, or are technological societies a subset of all the intelligent but non-tool making cultures out there? SETI specifically targets technology, which may itself be a rarity even in a universe awash with forms of life with high Shannon entropy in communications they make only among themselves.

A great benefit of SETI is that it is teaching us just how much we don’t know. Thus the recent Breakthrough Listen breakdown of their findings, which extends the data analysis to a much wider catalog of stars by a factor of 220, all at various distances and all within the ‘field of view,’ so to speak, of the antennae at Green Bank and Parkes. Still more recent work at the Murchison Widefield Array tackles an even vaster starfield. Still no detections, but we’re getting a sense of what is not there in terms of Arecibo-like signals aimed intentionally at us.

So how do you react to the idea that, in the absence of information to analyze from an actual technological signal, we will always be doing no more than collecting data about a continually frustrating ‘great silence?’ Because SETI can’t ever claim to have proven there is no one there.

  • Keith Cooper

That’s one of my unspoken worries about SETI; how long do we give it before we start to suspect that we’re alone? People might say, well, we’ve been searching for 60 years now – surely that’s long enough? Of course, modern SETI may be 60 years old, but we’ve certainly not accrued 60 years’ worth of detailed SETI searches. We’ve barely scratched the tip of the iceberg bobbing up above the cosmic waters.

So how long until we can safely say we’ve not only seen the tip of the iceberg, but that we’ve also taken a deep dive to the bottom of it as well? Maybe our limited human attention spans will come into play long before then, and we’ll get bored and give up. I think we can also be too quick to assume that there’s no one out there. Take the recent re-analysis of Breakthrough Listen data, which prompted one of the researchers, Bart Wlodarczyk-Sroka of the University of Manchester, to declare:

“We now know that fewer than one in 1600 stars closer than about 330 light years host transmitters just a few times more powerful than the strongest radar we have here on Earth. Inhabited worlds with much more powerful transmitters than we can currently produce must be rarer still.”

Except that we don’t know that at all. All we can say was that there was no one transmitting a radio signal during the brief time that Breakthrough was listening. We could have easily missed a Benford Beacon, for instance. It’s a problem of expectation versus reality – we expect these powerful, omnipresent beacons, and when we don’t find them we jump to the conclusion that ET must not exist, rather than the possibility that our expectation is flawed.

The Encyclopedia Galactic is a similar kind of expectation that isn’t just a fanciful notion, but is a concept that actively influences SETI – we expect ET to be blasting out this guide to the cosmos, so we tailor SETI to look for that kind of signal, rather than something like a Benford Beacon. It also biases our thinking as to what we might gain from first contact – all this knowledge given to us by peaceful, selflessly altruistic beings. It would be lovely if true, but I think it’s dangerous to expect it.

Case in point: Brian McConnell recently wrote on Centauri Dreams about his concept for an Interstellar Communication Relay – basically a way of disseminating the data detected within a received signal, giving everybody the chance to try and decipher it [see What If SETI Finds Something, Then What?]. He rightly points out that we need to start thinking about what happens after we detect a signal, and the relay is a nifty way of organising that, so that should we detect a signal tomorrow, we will already have procedures in hand.

I won’t comment too much on the technical aspects, other than to say that if a message contains a Shannon entropy of 30, then it probably won’t matter how many people try and make sense of the message, we won’t get close (A.I., on the other hand, may have a bit more luck).

The Interstellar Communication Relay is an effort to democratize SETI. My cynical side worries, however, about safeguards. The relay relies on people acting in good faith, and not concealing or misusing any information gleaned from a signal. McConnell proposes a ‘copyleft license’, a bit like a creative commons license, that will put the data in the public domain while preventing people commercialising it for their own gain. I can see how this makes sense in the Encyclopedia Galactica paradigm – McConnell refers to entrepreneurs being allowed to make “games and educational software” from what we may learn from the alien signal.

I worry about this. In The Contact Paradox, I wrote about how even something as innocent as the tulip, when introduced into seventeenth-century Dutch society, proved disruptive (https://en.wikipedia.org/wiki/Tulip_mania). The Internet, motor cars, nuclear power – they’ve all been disruptive, sometimes positively, other times negatively.

How do we manage the disruptive consequences of information from an extraterrestrial signal? Even if ET has the best of intentions for us, they can’t foresee what the effects will be when facets of their culture or technology are introduced into human society, in which case the expectation that ET will be wise and ‘altruistic’ is almost irrelevant. Heaven forbid they send us technology that could be turned into a weapon, and we can’t guarantee that bad actors – after being freely given that information – won’t run off with it and use it for their own nefarious ends. A copyleft license surely isn’t going to put them off.

My feeling is that fully deciphering a signal will take a long, long time, if ever, in which case we shouldn’t worry quite so much. But suppose we are able to decipher it quickly, and it’s more than just a simple ‘greetings’. Yes, we have to think about what happens after we detect a signal, but it’s not just the mechanics of processing that data that we have to think about; we also have to plan how we manage the dissemination of potentially disruptive information into society in a safe way. It’s a dilemma that the whole of SETI should be grappling with I think, and nobody – certainly not me – has yet come up with a solution. But, I think that revising our assumptions, recasting our expectations, and casting aside the idea that ET will be selflessly altruistic and wise, would be a good start.

  • Paul Gilster

Well said. As I look back through our exchanges, I see I didn’t get around to the Deep Time concept I wanted to explore, but maybe we can talk about that in our next dialogue, given your interest in the Cosmic Microwave Background, which is the very boundary of Deep Time. Let’s plan on discussing how ideas of time and space have, in relatively short order, gone from a small, Earth-centered universe defined in mere thousands of years to today’s awareness of a cosmos beyond measure that undergoes continuous accelerated expansion. All Fermi solutions emerge within this sense of the infinite and challenge previous human perspectives.

tzf_img_post

Odds and Ends on the Clouds of Venus

James Gunn may have been the first science fiction author to anticipate the ‘new Venus,’ i.e., the one we later discovered thanks to observations and Soviet landings on the planet that revealed what its surface was really like. His 1955 tale “The Naked Sky” described “unbearable pressures and burning temperatures” when it ran in Startling Stories for the fall of that year. Gunn was guessing, but we soon learned Venus really did live up to that depiction.

I think Larry Niven came up with the best title among SF stories set on the Venus we found in our data. “Becalmed in Hell” is a 1965 tale in Niven’s ‘Known Space’ sequence that deals with clouds of carbon dioxide, hydrochloric and hydrofluoric acids. No more a tropical paradise, this Venus was a serious do-over of Venus as a story environment, and the more we learned about the planet, the worse the scenario got.

But when it comes to life in the Venusian clouds — human, no less — I always think of Geoffray Landis, not only because of his wonderful novella “The Sultan of the Clouds,” but also because of his earlier work on how the planet might be terraformed, and what might be possible within its atmosphere. For a taste of his ideas on terraforming, a formidable task to say the least, see his “Terraforming Venus: A Challenging Project for Future Colonization,” from the AIAA SPACE 2011 Conference & Exposition, available here. But really, read “The Sultan of the Clouds,” where human cities float atop the maelstrom:

“A hundred and fifty million square kilometers of clouds, a billion cubic kilometers of clouds. In the ocean of clouds the floating cities of Venus are not limited, like terrestrial cities, to two dimensions only, but can float up and down at the whim of the city masters, higher into the bright cold sunlight, downward to the edges of the hot murky depths… The barque sailed over cloud-cathedrals and over cloud-mountains, edges recomplicated with cauliflower fractals. We sailed past lairs filled with cloud-monsters a kilometer tall, with arched necks of cloud stretching forward, threatening and blustering with cloud-teeth, cloud-muscled bodies with clawed feet of flickering lightning.”

Published originally in Asimov’s (September 2010) and reprinted in the Dozois Year’s Best Science Fiction: Twenty-Eighth Annual Collection, the story depicts a vast human presence in aerostats floating at the temperate levels. Landis has explored a variety of Venus exploration technologies including balloons, aircraft and land devices, all of which might eventually be used in building a Venusian infrastructure that would support humans.

We’ve already seen that Carl Sagan had written about possible life in the Venusian atmosphere, and an even more ambitious Paul Burch considered using huge mirrors in space to deflect sunlight, generate power, and cool down the planet. Closer to our time, an internal NASA study called HAVOC, a High Altitude Venus Operational Concept based on balloons, was active, though my understanding is that the project, in the hands of Dale Arney and Chris Jones at NASA Langley, has been abandoned. Maybe the phosphine news will give it impetus for renewal. The Landis aerostats would be far larger, of course, carrying huge populations. I have to wonder what ideas might emerge or be reexamined given the recent developments.

Image: Artist’s rendering of a NASA crewed floating outpost on Venus

With Venus so suddenly in the news, I see that Breakthrough Initiatives has moved swiftly to fund a research study looking into the possibility of primitive life in the Venusian clouds. The funding goes to Sara Seager (MIT) and a group that includes Janusz Petkowski (MIT), Chris Carr (Georgia Tech), Bethany Ehlmann (Caltech), David Grinspoon (Planetary Science Institute) and Pete Klupar (Breakthrough Initiatives). The group will go to work with the phosphine findings definitely in mind. Pete Worden is executive director of Breakthrough Initiatives:

“The discovery of phosphine is an exciting development. We have what could be a biosignature, and a plausible story about how it got there. The next step is to do the basic science needed to thoroughly investigate the evidence and consider how best to confirm and expand on the possibility of life.”

Phosphine has been detected elsewhere in the Solar System in the atmospheres of Jupiter and Saturn, with formation deep below the cloud tops and later transport to the upper atmosphere by the strong circulation on those worlds. Given the rocky nature of Venus, we’re presumably looking at far different chemistry as we try to sort out what the ALMA and JCMT findings portend, with exotic and hitherto natural processes still possible. On that matter, I’ll quote Hideo Sagawa (Kyoto Sangyo University, Japan), who was a member of the science team led by Jane Greaves that produced the recent paper:

“Although we concluded that known chemical processes cannot produce enough phosphine, there remains the possibility that some hitherto unknown abiotic process exists on Venus. We have a lot of homework to do before reaching an exotic conclusion, including re-observation of Venus to verify the present result itself.”

Image: ALMA image of Venus, superimposed with spectra of phosphine observed with ALMA (in white) and JCMT (in grey). As molecules of phosphine float in the high clouds of Venus, they absorb some of the millimeter waves that are produced at lower altitudes. When observing the planet in the millimeter wavelength range, astronomers can pick up this phosphine absorption signature in their data as a dip in the light from the planet. Credit: ALMA (ESO/NAOJ/NRAO), Greaves et al. & JCMT (East Asian Observatory).

I’ll close with the interesting note that the BepiColombo mission, carrying the Mercury Planetary Orbiter (MPO) and Mio (Mercury Magnetospheric Orbiter, MMO), will be using Venus flybys to brake for destination, one on October 15, the other next year on August 10. It has yet to be determined whether the onboard MERTIS (MErcury Radiometer and Thermal Infrared Spectrometer) could detect phosphine at the distance of the first flyby — about 10,000 kilometers — but the second is to close to 550 kilometers, a far more promising prospect. You never know when a spacecraft asset is going to suddenly find a secondary purpose.

Image: A sequence taken by one of the MCAM selfie cameras on board of the European-Japanese Mercury mission BepiColombo as the spacecraft zoomed past the planet during its first and only Earth flyby. Images in the sequence were taken in intervals of a few minutes from 03:03 UTC until 04:15 UTC on 10 April 2020, shortly before the closest approach. The distance to Earth diminished from around 26,700 km to 12,800 km during the time the sequence was captured. In these images, Earth appears in the upper right corner, behind the spacecraft structure and its magnetometer boom, and moves slowly towards the upper left of the image, where the medium-gain antenna is also visible. Credit: ESA/BepiColombo/MTM, CC BY-SA IGO 3.0.

And keep your eye on the possibility of a Venus mission from Rocket Lab, a privately owned aerospace manufacturer and launch service, which could involve a Venus atmospheric entry probe using its Electron rocket and Photon spacecraft platform. According to this lengthy article in Spaceflight Now, Rocket Lab founder Peter Beck has already been talking with MIT’s Sara Seager about the possibility. Launch could be as early as 2023, a prospect we’ll obviously follow with interest.

A final interesting reference re life in the clouds, one I haven’t had time to get to yet, is Limaye et al., “Venus’ Spectral Signatures and the Potential for Life in the Clouds,” Astrobiology Vol. 18, No. 9 (2 September 2018). Full text.

tzf_img_post

What Phosphine Means on Venus

A biosignature is always going to create a rolling discussion that gradually homes in on a consensus. Which is to say that the recent discovery of phosphine in the upper atmosphere of Venus has inspired a major effort to figure out how phosphine could emerge abiotically. After all, the scientists behind the just published paper on the phosphine discovery seem to be saying something to the community like “We can’t come up with a solution other than life to explain this. Maybe you can.”

The ‘maybes’ are out there and they include life, but what a tough spot for life to develop, for obvious reasons, not the least of which is the hyper-acidic nature of its clouds. So let’s dig into the story a bit more. The idea of life in the cloud layers of an atmosphere has a long pedigree, even on Venus, where discussions go back at least to the 1960s. Harold Morowitz and Carl Sagan examined the matter in a paper in Science in 1967, a speculation that led them to conclude “it is by no means difficult to imagine an indigenous biology in the clouds of Venus.”

And while the temperature at Venus’ surface can reach 480° Celsius, the temperatures between 48 and 60 kilometers above the surface are relatively benign, in the range of 1° to 90° C. A team led by Jane Greaves (Cardiff University) detected the spectral signature of phosphine through observations at 1 millimeter wavelength made with the James Clerk Maxwell Telescope (JCMT) in Hawaii, later confirmed with data from the Atacama Large Millimeter Array (ALMA) observatory in Chile. The resulting paper is lengthy and judiciously written, as witness:

If no known chemical process can explain PH3 within the upper atmosphere of Venus, then it must be produced by a process not previously considered plausible for Venusian conditions. This could be unknown photochemistry or geochemistry, or possibly life. Information is lacking—as an example, the photochemistry of Venusian cloud droplets is almost completely unknown. Hence a possible droplet-phase photochemical source for PH3 must be considered (even though PH3 is oxidized by sulfuric acid). Questions of why hypothetical organisms on Venus might make PH3 are also highly speculative…

And here again, the note that what we are talking about is unusual chemistry:

Even if confirmed, we emphasize that the detection of PH3 is not robust evidence for life, only for anomalous and unexplained chemistry. There are substantial conceptual problems for the idea of life in Venus’s clouds—the environment is extremely dehydrating as well as hyperacidic. However, we have ruled out many chemical routes to PH3

Image: Artist’s impression of Venus, with an inset showing a representation of the phosphine molecules detected in the high cloud decks. Credit: ESO / M. Kornmesser / L. Calçada & NASA / JPL / Caltech. Licence type Attribution (CC BY 4.0).

Phosphine is a rare molecule, one that is made on Earth through industrial methods, although microbes that live in environments without oxygen can likewise produce it when phosphate is drawn from minerals or other sources and coupled with hydrogen. MIT researchers have previously investigated it as a potential biosignature, one of a great many studied by Sara Seager and William Bains that we’ll want to use in our investigations of exoplanet atmospheres. It’s clear, though, that no one expected to find it in the clouds of Venus. Greaves explains:

“This was an experiment made out of pure curiosity, really – taking advantage of JCMT’s powerful technology, and thinking about future instruments. I thought we’d just be able to rule out extreme scenarios, like the clouds being stuffed full of organisms. When we got the first hints of phosphine in Venus’ spectrum, it was a shock!… In the end, we found that both observatories had seen the same thing – faint absorption at the right wavelength to be phosphine gas, where the molecules are backlit by the warmer clouds below.”

The international team working on the phosphine detection has investigated everything from minerals drawn into the clouds from the surface to volcanes, lightning, even sunlight, but none of the processes examined made enough phosphine to account for the data. In fact, the abiotic methods could produce at best one ten thousandth of the amount found in the telescope data.

But what a tough place for life to persist given an atmosphere where the high clouds are about 90 percent sulphuric acid. The hostility of the Venusian environment doubles down on the question of whether there are abiotic processes we have yet to consider. Following up on the phosphine detection, a new paper from the MIT researchers homes in on the matter:

(Greaves et al. 2020) have reported the candidate spectral signature of phosphine at altitudes >~57 km in the clouds of Venus, corresponding to an abundance of tens of ppb [parts per billion]. It was previously predicted that any detectable abundance of PH3 in the atmosphere of a rocky planet would be an indicator of biological activity (Sousa-Silva et al. 2020). In this paper we show in detail that no abiotic mechanism based on our current understanding of Venus can explain the presence of ~20 ppb phosphine in Venus’ clouds. If the detection is correct, then this means that our current understanding of Venus is significantly incomplete.

Image: This artistic impression depicts Venus. Astronomers at MIT, Cardiff University, and elsewhere may have observed signs of life in the atmosphere of Venus. Credit: ESO (European Space Organization)/M. Kornmesser & NASA/JPL/Caltech.

And from MIT co-author Clara Sousa-Silva, who examined phosphine as an exoplanet biosignature in a paper earlier this year, a look at the broader implications:

“A long time ago, Venus is thought to have oceans, and was probably habitable like Earth. As Venus became less hospitable, life would have had to adapt, and they could now be in this narrow envelope of the atmosphere where they can still survive. This could show that even a planet at the edge of the habitable zone could have an atmosphere with a local aerial habitable envelope.”

What a boon this finding will be to those interested in taking our eye off Mars for an astrobiological moment and looking toward the nearest terrestrial planet, for follow-up studies have to include one or more missions to Venus to study its atmosphere, perhaps including some kind of sampling and return to Earth. The MIT paper, Bains et al. as referenced below, includes both Seager and Sousa-Silva as co-authors, along with Cardiff’s Greaves, and bears a title that defines the issue: “Phosphine on Venus Cannot be Explained by Conventional Processes.”

Seager’s work on a wide range of potential biosignatures is definitive and has been examined before in these pages. Anyone interested in the broader question of how we go about defining a biosignature needs to get conversant with her “Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry,” Astrobiology, June 2016, 16(6): 465-485 (abstract).

So perhaps life, or perhaps a yet undiscovered mechanism for producing phosphine on Venus. Either way, the path forward includes an examination of a possible paradigm shift — the authors use this phrase — involving not just Venus but terrestrial planets in general. And I think we can assume that laboratory work on phosphorous chemistry is about to get a major boost.

The paper is Greaves et al., “Phosphine gas in the cloud decks of Venus,” Nature Astronomy 14 September 2020 (abstract). The MIT paper is Bains et al., “Phosphine on Venus Cannot be Explained by Conventional Processes,” submitted to Astrobiology – Special Collection: Venus (preprint). The Sousa-Silva paper on phosphine is “Phosphine as a Biosignature Gas in Exoplanet Atmospheres,” Astrobiology Vol. 20, No. 2 (31 January 2020). Abstract.

tzf_img_post

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives