Centauri Dreams
Imagining and Planning Interstellar Exploration
Extending the Astrobiological ‘Red Edge’
A useful exercise for learning how to look for life elsewhere is to try to find it right here on Earth. Thus Carl Sagan’s observations of our planet via data taken during the 1993 flyby of the Galileo spacecraft, which was doing a gravity assist maneuver enroute to Jupiter. Sagan and team found pigments on the Earth’s surface with a sharply defined edge in the red part of the spectrum. What he was looking at was the reflection of light off vegetation. The ‘red edge’ has become well known in astrobiology circles and is considered a potential biosignature.
On Earth, vegetation is the most abundant reflecting surface indicating life (vegetation covers about 60% of present-day Earth’s land surface). The increase in reflectance shows up at about 700 nm, varying in strength depending upon the species of plant. But as Jack O’Malley-James and Lisa Kaltenegger (Cornell University/Carl Sagan Institute) point out, photosynthetic structures containing chlorophyll are found not just in vegetation but also in lichens, corals, algae and cyanobacteria.
This is helpful, because for anyone looking at the early Earth, the vegetation red edge would have been apparent only after the advent of land plants, while if we can detect a similar feature in other forms of photosynthetic life (call this a photosynthetic red edge, or PRE), we can extend the ability to detect such life back as far as 2 billion years and more (in the case of cyanobacteria). According to the scientists, lichen probably emerged at about the same time as algae, 1 billion years ago, while corals and modern vegetation begin to appear no earlier than 725 million years back.
This offers a much wider ‘window’ in which to observe red edge features on other worlds. The authors’ new paper in Astrophysical Journal Letters looks at what could produce a PRE spectrum aside from land vegetation and asks whether features like these would be detectable. Says Kaltenegger:
“If an alien had used color to observe if our Earth had life, that alien would see very different colors throughout our planet’s history – going back billions of years – when different life forms dominated Earth’s surface. Astronomers had concentrated only on vegetation before, but with a better color palette, researchers can now look beyond a half-billion years and up to 2.5 billion years back on Earth’s history to match like periods on exoplanets.”
Image: To understand where exoplanets are in their own evolution, astronomers can use Earth’s biological milestones as a Rosetta stone. Credit: Wendy Kenigsberg/Cornell Brand Communications.
The paper models how a planet’s spectrum would change depending upon the dominant organism on the surface. O’Malley-James refers to the authors’ use of the early Earth in this analysis as a kind of Rosetta Stone, one that extends back halfway as far as the Earth itself. Examining the spectra of Earth-like planets modeled with four different organisms — cyanobacteria, algae, and lichen, as well as deciduous vegetation (lichen, for example, would have cast a sage to mint green color, a distinctive red-edge signature of photosynthesis), the authors show that the addition of an atmosphere and clouds to the model can mask individual features but still produce enough data to reach a broader conclusion: From the paper:
…for similar surface coverage the PRE signal of other organisms that could be dominant on the surface of an exoplanet can be similar in strength to the signal produced by modern vegetation for Earth in our models, which is approximated using deciduous tree reflectance producing an estimated reflectance increase of ?4% (Table 1), falling within the lower end of the range of values (1%–10%) given for Earth’s VRE,,, Figure 1 shows that individually the different organisms can be distinguished with high spectral resolution. However, once we add a present-day Earth atmosphere as well as clouds to the model…, the individually distinguishing slope of the reflectivity of the organisms is no longer apparent. Thus a red edge detection, while not being specific to any one form of photosynthetic organism, can indicate a wider range of organisms than only vegetation.
Image: This is Figure 1 from the paper. Caption: Examples of red edge features—the increase in reflectance caused by chlorophyll, highlighted in the shaded region—exhibited by (A) corals, (B) deciduous vegetation (trees; representative of the present-day red edge feature in Earth’s spectrum), (C) the photosynthetic sea slug, Elysia viridis, (D) lichen (Acarospora sp.), (E) algae (Rhodosorus marinus), (F) cyanobacteria (Chroococcidiopsis sp.). Credit: Jack O’Malley-James/Lisa Kaltenegger.
The red edge would be a difficult biosignature detection but not beyond the reach of high-precision instruments as we move to the next generation of observatories. It also provides another tool for biodetection that in combination with atmosphere analysis offers a multi-pronged approach to our remote probing for life, lessening the potential ambiguity of the results.
The paper is O’Malley-James & Kaltenegger, “Expanding the Timeline for Earth’s Photosynthetic Red Edge Biosignature,” Astrophysical Journal Letters Vol. 879, No. 2 (10 July 2019). Abstract.
A Gravitational Wave Approach to Exoplanets
We should always be on the lookout for new ways of finding exoplanets. Right now we’re limited by our methods to stars within the neighborhood of the Sun (in galactic terms), for both radial velocity and transit detections are possible only around brighter, closer stars. The exception here is gravitational microlensing, capable of probing deep into the galaxy, but here the problem is one of numbers. We simply don’t make enough detections this way to build up the kind of statistical sample that the Kepler mission has provided in terms of transiting planets.
So how significant is this kind of selection bias, which thus far has been forced upon us? Without knowing the answer, we would do well to explore ideas like those put forward by Nicola Tamanini (AEI Potsdam) and colleague Camilla Danielski (CEA/Saclay, Paris). The two scientists are looking at the possibilities of gravitational wave astronomy, looking toward the launch, in the 2030s, of LISA, the Laser Interferometer Space Antenna.
Image: Artistic representation of gravitational waves produced by a compact binary white dwarf system with a jovian mass planetary companion. Credit: © Simonluca Definis.
This is rarified air indeed, and the kind of target in play is likewise a rarity, giant exoplanets orbiting detached double white dwarf binaries (DWDs). These are intriguing objects, eclipsing double white dwarfs, remnants of stars like our Sun that have passed beyond their red giant phase. Short-period DWDs with orbital periods less than one hour are rarer still. But they’re worth seeking out because these short-period binaries generate powerful gravitational waves.
What the authors propose in their new paper in Nature Astronomy is to use gravitational waves to find circumbinary planets, worlds that orbit both stars in the binary. We have no planets around white dwarf binaries in our catalog at present, but LISA should be able to remedy that by identifying DWDs both inside and outside the Milky Way. Perturbations in the gravitational wave signal would then flag the presence of a third gravitationally bound object, a giant planet. Thousands of DWDs are expected to be found, producing no shortage of targets.
Tamanini likens the method to Doppler modulations of the kind we use with radial velocity studies, this being their gravitational wave analog. But significantly, gravitational waves are not affected by the kind of stellar activity that can confound radial velocity signals. Nor are we hampered by distance to the degree we are when using electromagnetic means, for gravitational wave perturbations should be apparent from anywhere in the galaxy and nearby galaxies as well. The scientist believes LISA could detect exoplanets down to about 50 Earth masses throughout this range.
If Tamanini’s conclusions are valid, the method would therefore bring the kind of large statistical sample we derived from Kepler to the domain of post-main sequence stellar systems, which means we are pushing into regions in what he calls the ‘planetary Hertzsprung-Russell diagram’ that have not yet been explored. Valid over the entire galaxy, the data would be free of selection effect. Moreover, the paper points out that follow-up observations of close-in DWDs will be helpful in confirming the LISA identification and deepening our knowledge of its characteristics:
Imaging of CBPs [circumbinary planets] around DWDs can be used to test the presence of a second generation of exoplanets in the outer regions of a planetary system, and consequently to provide constraints on migration theories. Emission spectra of these objects will furthermore allow us to estimate their temperature and the main molecular component of their atmosphere, making direct connections to chemical element distributions in the atmosphere of white dwarfs. This would also allow to better understand the observed white dwarf pollution effect. On the other hand, if an existing CBP accretes mass after a common-envelope stage, it becomes brighter, further decreasing the already low planet-to-white dwarfs contrast, meaning that also first-generation, more mature exoplanets can be imaged.
So we are looking at a kind of exoplanet about which we know nothing, if it indeed exists, but bear in mind that about half ot the stellar population occurs in multiple star systems. LISA is expected to measure gravitational waves from thousands of DWDs. Exoplanets here would yield insights into the kind of planet that survives a star’s red giant phase, while probing the regime of any second generation planets — those that form after the red giant phase is complete. We further our knowledge even if LISA finds no exoplanets around DWDs, for then we’ve set statistical constraints on the last phase of planetary evolution.
The paper is Tamanini et al., “The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA,” Nature Astronomy 8 July 2019 (abstract).
Keeping Voyager Alive
One of the many legacies of the Voyager spacecraft is the Interstellar Mapping and Acceleration Probe (IMAP). Scheduled for a 2024 launch, IMAP has as part of its charter the investigation of the solar wind’s interactions with the heliosphere, drawing on data from an area into which only the Voyagers have thus far ventured. Let me hasten to add that IMAP will stay much closer to home, orbiting the Sun-Earth L1 Lagrange point, but like the Interstellar Boundary Explorer (IBEX), it will help us learn more about a region physically reachable only by long-duration craft.
The fact that we’re still talking about Voyager as an ongoing mission is the story here. Launched in 1977, the doughty probes have kept surprising us ever since. In terms of their longevity, I noted in 2017 that when Voyager 1’s thrusters had begun to lose their potency (they’re needed to keep the spacecraft’s antenna pointed at Earth to return data), controllers were able to fire a set of backup thrusters that hadn’t been used for a whopping 37 years.
Even the Voyager Interstellar Mission, an extension to the primary, is long in the tooth, having begun when the two spacecraft had been in flight no more than twelve years. These days Voyager is all about power management, for we’re still getting good data. Voyager 1’s cosmic ray instrument is still at work, along with a plasma instrument, its magnetometer, and its low-energy charged particle instrument. Voyager 2 likewise studies cosmic rays, operates two plasma instruments, a magnetometer, and its own low-energy charged particle instrument.
Voyager instruments are proving to be as tenacious as bulldogs. Consider: Voyager 2’s cosmic ray subsystem (CRS) continues to run although engineers have turned off the heater that keeps it warm to save power, as part of a new power management plan for both spacecraft. The CRS now functions at -59 degrees Celsius, a good 15 degrees colder than it was originally tested for back in the days before launch. Voyager 1’s ultraviolet spectrometer continued to function for years after losing its heater as part of an earlier power strategy implemented in 2012.
Voyager project manager Suzanne Dodd (Jet Propulsion Laboratory) notes how important it is to make choices about power and instruments, given that the heat available from the three radioisotope thermoelectric generators (RTGs) aboard each craft decreases with time, for each spacecraft produces 4 fewer watts of electrical power each year. We’re down to 60 percent of the heat energy the RTGs could produce at launch, so hard decisions have to be made about which systems to keep operational. Says Dodd:
“It’s incredible that Voyagers’ instruments have proved so hardy. We’re proud they’ve withstood the test of time. The long lifetimes of the spacecraft mean we’re dealing with scenarios we never thought we’d encounter. We will continue to explore every option we have in order to keep the Voyagers doing the best science possible.”
Image: This artist’s concept depicts one of NASA’s Voyager spacecraft, including the location of the cosmic ray subsystem (CRS) instrument. Both Voyagers launched with operating CRS instruments. Credit: NASA/JPL-Caltech.
The cosmic ray subsystem had its heater turned off despite its role in detecting Voyager 2’s passage through and exit from the heliosphere, the ‘bubble’ produced by the outflow of solar wind particles from the Sun. One aspect of this difficult choice is that the CRS can only look in specific fixed directions, making its heater in this environment expendable. Voyager 2 is driving the new power plan because it has one more instrument collecting data than Voyager 1.
If there is one place where power remains essential to the last, it’s the fuel lines that power the Voyager thrusters. In addition, Voyager 2’s current thrusters are degrading, just as Voyager 1’s did, forcing a switch to trajectory correction maneuver (TCM) thrusters last used during the encounter with Neptune in 1989. That switch should take place later this month. Let’s give a nod to Aerojet Rocketdyne, whose MR-103 thrusters have performed beyond all expectation, as has the mission itself, originally slated to last but five years.
One day, probably in the coming decade though perhaps late in it, the amount of electrical power needed to keep both spacecraft operational will no longer be available. Here’s hoping we get at least eight more years out of the Voyagers so that they’re still with us on their 50th anniversary. My own hunch is that the gifted people managing the Voyager Interstellar Mission may just find enough tricks to get them through to 2030 before the flow of data ceases.
As I’m still delighted to say, this mission isn’t over. Go Voyager.
Unusual Atmosphere of a ‘Sub-Neptune’
We refine our terminology as we go when a field as new as exoplanetology is in play. Take the case of GJ 3470b. At 12.6 Earth masses, is this a ‘sub-Neptune’ or a ‘super Earth’? Neptune itself is 17 Earth masses, so I’d on balance give the nod to ‘sub-Neptune,’ though categories here get confusing. The planet is 0.031 AU out from its star, a red dwarf half the mass of our Sun. Oddly, it has a hydrogen/helium atmosphere in which heavier elements are all but absent.
We know this because scientists have been able to put data from both the Hubble instrument and Spitzer to work on an analysis of the atmosphere of the planet. This is done through a technique we’ve examined before, transmission spectroscopy, in which astronomers study the absorption of the star’s light as the planet passes across its face (a transit as seen from Earth), and then the loss of reflected planetary light as the planet moves behind the star (this is called a secondary eclipse).
Image: A comparison between transits and secondary eclipses (also sometimes called occultations). In a planetary transit, the planet crosses in front of the star (see lower dip) blocking a fraction of the star’s brightness. In a secondary eclipse, the planet crosses behind the star, blocking the planet’s brightness (see dip in the middle). The latter dip in brightness is fainter due to the faintness of the planet. Credit: astrobites/Josh Winn.
The atmospheric data come from observations of 12 transits and 20 eclipses, giving us a first look at the atmospheric composition of a world like this. GJ 3470b is, to say the least, unusual. Björn Benneke (University of Montreal) is lead author of the paper, now available in Nature Astronomy:
“This is a big discovery from the planet-formation perspective. The planet orbits very close to the star and is far less massive than Jupiter – 318 times Earth’s mass – but has managed to accrete the primordial hydrogen/helium atmosphere that is largely ‘unpolluted’ by heavier elements. We don’t have anything like this in the solar system, and that’s what makes it striking.”
The scientists expected to find heavier elements such as carbon and oxygen, out of which we would detect water vapor and methane. This would point to the Neptune model. But the data threw a curve: What was actually revealed was an atmosphere devoid of heavy elements, to such a degree that Benneke likens it to the hydrogen and helium composition of the Sun. With resemblances to a gas giant atmosphere in being hydrogen-dominated, it is nonetheless one that is depleted in methane.
Here’s how the paper handles the lack of methane, and its bearing on planet formation. One possibility is that there is interior heating that is not being accounted for, but there are others:
Evolution modeling of GJ 3470b indicates that internal heat from formation should have been radiated away within a few Myr, well below the estimated age of the system; however, tidal heating due to forced eccentricity from another unseen planet in the system, similar to the situation with Jupiter’s moon Io could be a possible explanation. The residual non-zero eccentricity of GJ 3470b as independently confirmed by our eclipse observations and radial velocity measurements support this hypothesis. Alternatively, GJ 3470b’s surprising lack of methane could potentially be the results of photochemical depletion due to catalytic destruction of CH4 in deeper atmospheric regions where photolysis of NH3 and H2S release large amounts of atomic hydrogen. The fact that ammonia is also depleted in comparison to expectations based on our chemical-kinetics modeling is consistent with this catalytic-destruction possibility.
Image: This artist’s illustration shows the theoretical internal structure of the exoplanet GJ 3470b. It is unlike any planet found in the Solar System. Weighing in at 12.6 Earth masses the planet is more massive than Earth but less massive than Neptune. Unlike Neptune, which is 4.5 billion kilometers from the Sun, GJ 3470b may have formed very close to its red dwarf star as a dry, rocky object. It then gravitationally pulled in hydrogen and helium gas from a circumstellar disk to build up a thick atmosphere. The disk dissipated many billions of years ago, and the planet stopped growing. The bottom illustration shows the disk as the system may have looked long ago. Observation by NASA’s Hubble and Spitzer space telescopes have chemically analyzed the composition of GJ 3470b’s very clear and deep atmosphere, yielding clues to the planet’s origin. Many planets of this mass exist in our galaxy. Credit: NASA, ESA, and L. Hustak (STScI).
The authors rule out migration of a world that formed beyond the snow line, for this origin would have produced the heavier elements we do not see here. Instead, they believe that GJ 3470b formed where it is today, showing that sub-Neptunes can form with atmospheres that are the result of direct accretion from the protoplanetary disk onto a rocky core. The implication is that we are looking at a planet-forming process that is essentially distinct from more massive planets, one in which the gas envelope is not enriched to any great degree by later collisions.
There is so much to learn about this, indicating just how far we have to go in our understanding of such low-mass, star-hugging planets. The authors point to GJ 3470b as a prime target for the James Webb Space Telescope. Every time I read something like this I think about how much is riding on JWST being launched successfully and can only keep my fingers crossed. For studying atmospheric chemistry is going to require powerful space-based resources as we start delving into atmospheres on worlds this small and aim at rocky worlds that are smaller still.
The paper is Benneke et al., “A Sub-Neptune Exoplanet with a Low-Metallicity Methane-Depleted Atmosphere and Mie-Scattering Clouds,” published online by Nature Astronomy 1 July, 2019 (preprint).
Apollo’s Lunar Module Simulator
I’m staying in Apollo mode this morning because after Friday’s piece about the Lunar Module Simulator, Al Jackson forwarded two further anecdotes about his work on it that mesh with the discussion. Al also reports that those interested in learning more about the LMS can go to the official Lunar Module familiarization manual, which is available here. I’ve also inserted some background on the LMS, with my comments in italics.
by Al Jackson
A couple of funny anecdotes about the Lunar Module Simulator.
It took some effort to get the LMS up and running … we could do a little simulation when it was first installed, but I had a very irregular schedule. I always worked at the LMS crew training 8 am to Noon, but for most of 1967, because the crew did not train after 5 pm, I came many the night with the Singer engineers to test the LMS, sometimes 6 to midnight, sometimes midnight to 7 am, and yeah I had to stick around for the 8 am to noon shift, and then go home and sleep.
There was a lot of weekend work too, it was 24-7-365 for about two years. (We did take Thanksgiving and Christmas off).
The most impressive glitch I remember was after Apollo 9 flew. Apollo 9 was Earth orbit only. We immediately then started doing lunar operations, especially ascents (I don’t think we had all the software and visuals for descent yet). All this was mostly digital to analog conversion. The equations of motion and the out-the-window visuals were being driven by a large bank of digital computers, most programmed in FORTRAN.
The reset point was the LM on the Lunar surface. So the set-up was that you looked out the LM cockpit window at a lunar surface (we had a better scene later), and when you hit the button to start the engine, the LM window showed the lunar surface slowly fade away and all went gray. The printout said our altitude was negative. We were sinking into the Moon!
So the guys fixed a Boolean in the software to keep us on the surface. Ok, then when one launched, that is turned on the ascent engine, we had engine on for 460 seconds. Ascent looked good, but look out the window and slowly the lunar surface came up and hit you in the face! The LM was doing a ballistic arc!
It took a day to figure it out. The solution was easy – looking at the code we saw that someone had forgotten to replace the central mass in the equations of motion, EOM. We were using the Earth’s mass, not the Moon’s!
A second anecdote. They finally installed the high fidelity Lunar Surface sim support, a model of the landing site made of plaster with a 6 degree of freedom TV camera rig, this video responding to the LMS EOM fed video to the cockpit windows. So, of course, the technicians glued a plastic bug to that model surface. When the crew made a landing, if facing the right way, a Godzilla sized bug appeared in the distance! The crews of course loved it, sim management not so much.
The Lunar Surface Sim
The Lunar Module Simulators in Houston and Cape Kennedy were produced by the Link Group of Singer General Precision Systems, under contract to Grumman Aircraft Engineering Corporation, with visual display units provided by Farrand Optical Company. From an article Al forwarded to me this morning titled “The Lunar Module Simulator,” by Malcolm Brown and John Waters, this description:
The Lunar Module Simulator was designed to train flight crews for the lunar landing mission. It is a complex consisting of an instructor-operator station, controlling computers, digital conversion electronics, external visual display equipment, and a fixed-base crew station. Actual flights are simulated,through computer control of spacecraft systems and mission elements which are modeled by real-time digital programs. Dynamic out-the-window scenes are provided through an infinity-optics display system during the simulated flights.
A five-ton system of lenses, mirrors and mounts made up the visual display system, which was attached to the LMS crew station. The heart of the simulator was a crew station that resembled in all details the actual spacecraft. Here is a photo Al sent showing the Mission Effects Projector. Another subsystem of the LMS visual suite, it used a film projection device for the early descent phase until switching to an optical unit that moved over a model of the Moon’s surface.:
Here’s the document’s description of this critical LMS component:
From approximately 8,000 feet almost to touchdown, the simulated views of the lunar surface are generated by the landing and ascent model, and are transmitted to the visual display system through high resolution television. The images are available to either forward window of the LMS crew station. The landing and ascent model, shown in Figure 18, consists of an optical probe located on a movable carriage and an overhead model of the lunar surface. This last is an accurate reproduction of one of the chosen lunar landing sites, constructed by the U.S. Army Topographical Command. Simulated sunlight on the lunar surface, which produces shadows used for visual evaluation of the landing site, comes from a special collimated light source.
Incidentally, in the incident with the bug that Al mentions above, this same document records that Armstrong, seeing what appeared to be a 200-foot tall horsefly in the distance after landing on the Moon, announced there would be no EVA, whereupon he was asked by the engineers simulating Mission Control why he would cancel, since large horseflies were common in Texas, where Armstrong lived. Neil’s response: He was not concerned as much about the 200-ft horsefly as he was about the 10,000 foot man who had placed it there.
Finally, Al sends along several LMS training reports. Here’s one I found particularly interesting, for obvious reasons.
Reminiscences of Apollo
While compiling materials for a book on Apollo 11, Neil McAleer accumulated a number of historical items that he passed along to me (thanks, Neil!), and I’m thinking that with the 50th anniversary of the first landing on the Moon approaching, now is the right time to publish several of these. Centauri Dreams has always focused on deep space and interstellar issues, but Apollo still carries the fire, representative of all human exploration into territories unknown. In the piece that follows, Neil talked to Al Jackson, a well known figure on this site, who as astronaut trainer on the Lunar Module Simulator (LMS) worked with Neil Armstrong and Buzz Aldrin before Apollo 11 launched, along with other Apollo crews. McAleer finalized and synthesized the text, which I’ll follow with a piece Al wrote for Centauri Dreams back in 2012, as it fits with his reminiscences related to McAleer. I’ve also folded in some new material that Al sent me this morning.
by Al Jackson and Neil McAleer
In the fall of 2018, this writer began a correspondence with Al Jackson, a NASA Simulator Engineer and instructor for Neil Armstrong and Buzz Aldrin for the Apollo 11 mission.
“We instructors spent two and a half years with Neil and Buzz—almost every day for the first 6 months of 1969 [before the historic launch in July]. In those years we instructors spent almost that much time with the Apollo 9,10,12,13 crews and backup crews.
“When we were working with Neil and Buzz … Neil was indeed a very quiet man but he was not all that taciturn. He was easy going and approachable. The film First Man seemed to imply Neil was quite glum in private, but I never got that impression; even if there were times when he was, I never saw it. The movie even made it seem Neil was a bit morose in private, another aspect that I never detected from seeing him at work almost every day.
“It’s odd that we instructors on the Lunar Module Simulator worked with Neil and Buzz almost every day for those two and a half years, but we never socialized with them. We even traveled with them to MIT and TRW and only saw them at the technical briefings.”
Image: Al Jackson (facing the camera at the main console of the Lunar Module Simulator) performing a checkout of LMS systems with his colleagues. Credit: A. A. Jackson.
“One thing— we really saw more of Buzz than Neil. Buzz was, and still is, a Space Cadet! He put in extra time on manual rendezvous training; he was responsible for the neutral buoyancy facility; and he practiced EVA for Gemini so he had zero problems on Gemini 12. Buzz was more into spaceflight than any of the other astronauts.”
A Working Team
In one of my emails to Al Jackson, I asked his opinion on how Neil and Buzz worked together during the simulator training years:
“My observation is that during training both Neil and Buzz got along fine. Funny thing, Buzz would definitely express himself more than Neil, but those two were the quietest we ever had in the cockpit during Lunar Module simulations.
“One time they were in at 8 am and did not say a word to us or each other by 11 am. I remember someone suggested we go up to the cockpit and check to see if they had passed out!
“I know an odd story about Neil,” Al continued. “One day he was in the simulator, came out, and smoked a cigarette, looked at us and said, ‘That was my one cigarette for the year.’ He smiled and went back to the cockpit.”
In a reply to Al, I gave him my opinion that this comment was similar to Neil’s well-known quote about every living human on our planet having a finite number of heartbeats in their lives, and Neil didn’t want to waste any of them on basic exercise when he loved to fly so much. This writer considers these two comments as Neil’s personal nods to human mortality.
Another story came in another e-mail from Al Jackson in early 2019: “I was talking recently to the main Primary Guidance and Navigation System instructor on the Lunar Module Simulator, Bob Force (Force and I spent a lot of time together); he noted that the day after the LLTV [Lunar Landing Training Vehicle] crash [May 6, 1968], Armstrong came to the simulator.
“We asked how he was, and he said, ‘Oh just some stiffness’—That was all.”
Armstrong had cheated death by about 2 seconds because his parachute opened just before he landed.
“I talked to another instructor who I met early that day, and he said something like ‘have a hard time yesterday?’ Neil, who had bitten his tongue during ejection gave that guy a very hard look.”
Image: Astronaut Neil Armstrong flying LLRV-1 at Ellington AFB shortly before the crash (left) and ejecting from the vehicle just seconds before it crashed (right). Credit: NASA.
Buzz Aldrin’s Exit from Eagle to Join Neil on the Moon’s Surface
As I was researching information about Apollo 11’s EVA and walk on the moon, one of my major sources was to read portions of the official transcript of their EVA activities. Here something unusual emerged. Aldrin’s real exit from the Eagle needed his crewmate’s specific directions on orientation of his body as he went through the hatch—just like Aldrin assisted Neil exiting the Eagle from inside its cockpit.
ARMSTRONG: “Okay. Your PLSS [Portable Life Support System] is—looks like it’s clearing. The shoes are about to come over the sill. Okay, now drop your PLSS down. There you go . . . About an inch clearance on top of your PLSS. . . .
Okay, you’re right at the edge of the porch. . . . Looks good.
ALDRIN: Now I want to back up and partially close the hatch, making sure not to lock it on my way out. [My italics for emphasis!]
ARMSTRONG: “A particularly good thought.”
Neil was probably thinking about the time of their EVA simulation “dress rehearsal,” when the mock LM’s hatch turned out to be locked when Neil unsuccessfully tried to re-enter their mock Lunar Module during rehearsal. He had to file a report. The lesson was learned.
So the answer is that they were both very aware of the possible problem on the “real EVA” for Apollo 11, and the lockout experience in training was avoided.
[PG: Al also adds this note in a morning email about the ‘locked hatch’ situation.]
“That was probably the egress – ingress simulator, which was a full sized mock-up of the LM (though there was more than 1 of those). It was a pretty faithful mock-up. I remember the very first day I worked at the Manned Space Center in Houston, the day I mustered in, which was the first Monday of the last week in January 1966… after work I climbed up in that simulator looked out the windows and thought of Wernher von Braun and Robert Heinlein, the men who , with their writings, had gotten me there! I felt like a space cadet!”
Image: “When it was my turn to back out, I remember the check list said to reach back and carefully close the hatch, being careful not to lock it,” said Buzz Aldrin, Apollo 11’s lunar module pilot. He climbed down the ladder, looked around and described the sparse lunar landscape as “magnificent desolation.” Credit: NASA/Neil Armstrong.
On Apollos 11 and 12
And this is Al Jackson’s article from 2012, one I reproduce here for its insights into the Apollo program.
I spent almost 4 years in the presence of Neil Armstrong and Buzz Aldrin. I came to the Manned Spacecraft Center (MSC) in 1966, where I was placed as a crew training instructor. I had degrees in math and physics at that time. Seems engineers were pressed into real engineering work or had been siphoned off into the DOD. Spaceflight attracted a lot of physicists who could be put to work on all kinds of stuff.
I met Buzz first, I think as early as 1966. At MSC in those days I used to be in Bldg. 4 (my office) or Bldg. 5 (the simulation facility) in the evenings. Sometimes we worked a lot of second shift and I was unmarried at the time with a lot of time on my hands. Anyway Buzz would come to Bldg. 5 to practice in a ‘part task’ trainer doing manual rendezvous, something he had pioneered. So I kind of got to know Buzz, but I can’t remember much but small talk and later talk about the Abort Guidance System which was my subsystem.
When the Lunar Module Simulator (LMS) got into operation I started seeing Neil, but never talked to him much. Of all the Apollo crews Neil and Buzz were the most quiet. I do remember Neil from the trips to MIT and TRW, to go to briefings on the Primary Guidance and Navigation and the Abort Guidance System.
Image: Al Jackson (top left) and a NASA colleague testing the environmental system of the Lunar Module in 1968. Credit: Al Jackson.
I had seen Buzz do a little ‘chalk talking’ about technical stuff, but on the TRW trip Neil got up and gave a short seminar about rendezvous in orbit, some math stuff and all. He really knew his stuff. I remember being kind of surprised because I knew about Buzz’s doctorate in astronautics, but did not know Neil knew that much engineering physics.
The Apollo 11 crew were the backup crew for Apollo 8, except for Fred Haise — that crew too could have been first on the moon. I puzzle these days whether Deke Slayton and higher ups arranged that it would be Neil and Buzz or not. All the astronauts I worked with were very unusual and able men… but Neil and Buzz had more than the Right Stuff, they were kind of magicians of confidence. It would be years before the astronaut corps had anyone quite like them.
You know working Apollo, nearly 24 – 7 for five years, in those days we had our heads down in the trenches, so it is strange to think back, a lot of odd things and lore escaped my attention. I was never a diary keeper, but wish I had been. I do remember how seat-of-the-pants everything was. Everything became much more formalized in the Shuttle Era and I was glad I did not stay in crew training for all but 5 years of my tenure at JSC.
It was the Apollo 12 crew who were the most fun. Pete Conrad was the most free spirited man I ever met. He bubbled with enthusiasm and humor, a thinking man’s Evel Knievel. He was an ace pilot who kept us in stitches all the time. Conrad and Bean spent a lot of time in the LMS (I think Neil and Buzz spent the most) and we instructors really got tired of wearing our headsets , so when crews were in the LMS we would turn on the speakers we had on the console since the crew spent most of their time talking between themselves. When Conrad was in the cockpit we had to turn the speakers off, since we would unexpectedly have visitors come by.
The reason why: Conrad, an old Navy man, could string together some of the most creative blue language you would ever want to hear. The main guidance computer aboard both the Command Module and Lunar Module was called the Primary Guidance, Navigation and Control System (PGNCS), but the crews called it the PINGS. Conrad never called it that. I can’t repeat what he called it, but he never, in the simulator called it that. The instructors remembered the trouble Stafford and Cernan caused on Apollo 10 with their language, and we thought lord! Conrad is gonna make even Walter Cronkite explode in an oily cloud! Yet on Apollo 12 he never slipped once, that’s how bright a man he was.
A month or two before Apollo 11 Conrad and Bean were in the cockpit of the LMS and John Young was taking a turn at being the pilot in the CMS (Command Module Simulator). We were running an integrated sim. Young had learned that the CM would be named Columbia and the LM Eagle. Conrad being his usual individualistic self said that must have pleased Headquarters. (Of course Mission Control needed those names when the two vehicles were apart for comm reasons).
So Conrad could not resist. He told Bean and Young right then and there that they were going to name the CM and LM two names that I also can’t repeat. Bean and Young had a ball the rest of the sim giving those call signs, but that only lasted one day. Conrad, as you might suspect, never used the language in an insulting way or even to curse something — he was a very friendly and funny man. But it’s so second nature in the military to use language like that, and those Navy men, well, they never said “pardon my French!” Later the three Navy men (Conrad, Bean and Gordon) gave their spacecraft proper Navy names! Remember them?
[PG: I had to rack my brains on that one, but finally dredged up the command module’s name — Yankee Clipper. The LEM was Intrepid.]
Science Fiction and Apollo
[PG: Finally, this snip from another email Al sent me this morning, of interest to those of us who follow science fiction and its influence.]
“I have given interviews, by phone, to a few authors of recent Apollo 11 authors, I don’t know if it was Neil McAleer who asked me this question: ‘Did you meet any science fiction fans when you started at MSC in 1966.’ Somehow someone knew I had been in and still was (no longer in a strong way) in science fiction fandom. I said no. I did not meet any true blue fans in NASA till years later.
“About half the guys I worked with were avid SF readers, no surprise, but none had been in SF fandom.
“I did have one experience that Alan Andres, one of the authors of the new book Chasing The Moon, checked. In April of 1968 2001: A Space Odyssey had (I think) its 3rd USA premiere in Houston. I desperately wanted to see it opening night but was not able to wangle a ticket.
“I did see it the next night. The next week around the coffee pot in building 5 Buzz was there talking to the Apollo 11 backup crew Lovell, Anders, and Haise. They were asking him about the ending, I distinctly heard Aldrin telling them to read Clarke’s Childhood End. I was not surprised that Buzz was an SF reader. (Alan Andres told me that Buzz said he was tired from training that day and that he slept through most of the movie… still I think Buzz caught enough to know a good answer. I swear I heard this conversation in April of 1968. I am sure Buzz does not remember it).”
Image: A time like no other: Collins, Aldrin, Armstrong amidst an exultant crowd in August of 1969.