A Dark Object or ‘Dark Matter’?

We are fortunate enough to be living in the greatest era of discovery in the history of our species. Astronomical observations through ever more sensitive instruments are deepening our view of the cosmos, and just as satisfyingly, forcing questions about its past and uncertain future. I’d much rather live in a universe with puzzling signs of accelerated expansion (still subject to robust debate) and evidence of matter that does not interact with the electromagnetic force (dark matter) than in one I could completely explain. Thus the sheer enjoyment of mystery, a delight accented this morning as I contemplate the detection of a so-called ‘dark object’ of unusually low mass. Presented in both Nature Astronomy and Monthly Notices of the Royal Astronomical Society, the papers describe an object that could only be detected through gravitational lensing, a familiar exoplanet detection tool that reshapes light passing near it. With proper analysis, the nature of the distortion can produce a...

read more

Solar Sails for Space Weather

A new paper dealing with solar phenomena catches my eye this morning. Based on work performed at the University of Michigan, it applies computer modeling to delve into what we can call ‘structures’ in the solar wind, which basically means large-scale phenomena like coronal mass ejections (CMEs) and powerful magnetic flux ‘ropes’ that are spawned by the interaction of a CME and solar wind plasma. What particularly intrigues me is a mission concept that the authors put to work here, creating virtual probes to show how our questions about these structures can be resolved if the mission is eventually funded. More on that paper in a minute, but first let me dig into the mission’s background. It has been dubbed Space Weather Investigation Frontier, or SWIFT. Originally proposed in 2023 in Frontiers in Astronomy and Space Sciences and with a follow-up in 2025 in Acta Astronautica (citations below), the mission is the work of Mojtaba Akhavan-Tafti and collaborators at the University of...

read more

Rogue Planets: A Stellar Infancy?

How exoplanets emerge from circumstellar disks has always intrigued me, and many open questions remain, including the precise mechanisms behind the fast growth of gas giants. When the topic swings to so-called ‘rogue’ planets, formation issues seem to be the same, since we've assumed most such worlds have been ejected from a host system through gravitational interactions. But is there another formation path? We are learning that rogue planets are capable of feats not seen in conventional star/planet systems. Research out of the National Institute for Astrophysics (INAF) in Italy is provocative. Using data from the European Southern Observatory’s Very Large Telescope (VLT) as well as the James Webb Space Telescope, Víctor Almendros-Abad (Astronomical Observatory of Palermo) and an international team of astronomers have found a large rogue planet (five to ten times as massive as Jupiter) that continues to form, accreting gas and dust from a surrounding cloud. No circumstellar disk...

read more

A Potential Martian Biosignature

I’ve long maintained that we’ll find compelling biosignatures on an exoplanet sooner than we’ll find them in our own Solar System. But I’d love to be proven wrong. The recent flurry of news over the interesting findings from the Perseverance rover on Mars is somewhat reminiscent of the Clinton-era enthusiasm for the Martian meteorite ALH8001. Now there are signs, as Alex Tolley explains below, that this new work will prove just as controversial. Biosignatures will likely be suggestive rather than definitive, but Mars is a place we can get to, as our rovers prove. Will Perseverance compel the sample return mission that may be necessary to make the definitive call on life? by Alex Tolley Overview of jezero Crater and sample site in article. Credit NASA/MSSS/USGS. On September 10, 2025, Nature published an article that got wide attention. The authors claimed that they had discovered a possible biosignature on Mars. If confirmed, they would have won the race to find the first...

read more

Exoplanets: Refining the Target List

I wasn’t surprised to learn that the number of confirmed exoplanets had finally topped 6,000, a fact recently announced by NASA. After all, new worlds keep being added to NASA’s Exoplanet Science Institute at Caltech on a steady basis, all of them fodder for a site like this. But I have to admit to being startled by the fact that fully 8000 candidate planets are in queue. Remember that it usually takes a second detection method finding the candidate world for it to move into the confirmed ranks. That 8000 figure shows how much the velocity of discovery continues to increase. The common theme behind much of the research is often cited as the need to find out if we are alone in the universe. Thus NASA’s Dawn Gelino, head of the agency’s Exoplanet Exploration Program (ExEP) at JPL: “Each of the different types of planets we discover gives us information about the conditions under which planets can form and, ultimately, how common planets like Earth might be, and where we should be...

read more

Beaming and Bandwidth: A New Note on the Wow! Signal

James Benford (president of Microwave Sciences, Lafayette CA) has just published a note in the Journal of the British Interplanetary Society that has relevance to our ongoing discussion of the Wow! Signal. My recent article was in the context of new work at Arecibo, where Abel Mendez and the Arecibo Wow! research effort have refined several parameters of the signal, detected in 1977 at Ohio State’s Big Ear Observatory. Let me slip in a quick look at Benford's note before we move on from the Wow! Signal. Benford has suggested both here and in other venues that the Wow! event can be explained as the result of an interstellar power beam intercepting our planet by sheer chance. Imagine if you will the kind of interstellar probe we’ve often discussed in these pages, one driven by a power beam to relativistic velocities. Just as our own high-powered radars scan the sky to detect nearby asteroids, a beam like this might sweep across a given planet and never recur in its sky. But it’s quite...

read more

SETI Odds and Ends

I'm catching up with a lot of papers in my backlog, prompted by a rereading yesterday of David Kipping’s 2022 paper on the Wow! Signal, the intriguing, one-off reception at the Big Ear radio telescope in Ohio back in 1977 (Kipping citation below). I had just finished checking Abel Mendez’ work at Arecibo, where the Arecibo Wow! project has announced a new analysis based on study of previously unpublished observations using updated signal analysis techniques. No huge surprises here, but both Kipping’s work and Arecibo Wow! are evidence of our continuing fascination with what Kipping calls “the most compelling candidate for an alien radio transmission we have ever received.” They also remind us that no matter how many times this intriguing event has been looked at, there are still new ways to approach it. I give the citation for the Mendez paper, written with a team of collaborators (one of whom is Kipping) below. Let me just pull this from Mendez’ statement on the Arecibo Wow! site,...

read more

Stitching the Stars: Graphene’s Fractal Leap Toward a Space Elevator

The advantages of a space elevator have been percolating through the aerospace community for quite some time, particularly boosted by Arthur C. Clarke’s novel The Fountains of Paradise (1979). The challenge is to create the kind of material that could make such a structure possible. Today, long-time Centauri Dreams reader Adam Kiil tackles the question with his analysis of a new concept in producing graphene, one which could allow us to create the extraordinarily strong cables needed. Adam is a satellite image analyst located in Perth, Australia. While he has nursed a long-time interest in advanced materials and their applications, he also describes himself as a passionate advocate for space exploration and an amateur astronomer. Today he invites readers to imagine a new era of space travel enabled by technologies that literally reach from Earth to the sky. by Adam Kiil In the quiet predawn hours, a spider spins its web, threading together a marvel of biological engineering: strands...

read more

3I/ATLAS: The Case for an Encounter

The science of interstellar objects is moving swiftly. Now that we have the third ‘interloper’ into our Solar System (3I/ATLAS), we can consider how many more such visitors we’re going to find with new instruments like the Vera Rubin Observatory, with its full-sky images from Cerro Pachón in Chile. As many as 10,000 interstellar objects may pass inside Neptune’s orbit in any given year, according to information from the Southwest Research Institute (SwRI). The Gemini South Observatory, likewise at Cerro Pachón, has used its Gemini Multi-Object Spectrograph (GMOS) to produce new images of 3I/ATLAS. The image below was captured during a public outreach session organized by the National Science Foundation’s NOIRLab and the Shadow the Scientists initiative that seeks to connect citizen scientists with high-end observatories. Image: Astronomers and students working together through a unique educational initiative have obtained a striking new image of the growing tail of interstellar Comet...

read more

Ancient Life on Ceres?

We keep going through revolutions in the way science fiction writers handle asteroids. Discovered in 1801, Ceres and later Pallas (1802) spawned the notion that there once existed a planet where what came to be thought of as the asteroid belt now exists. Heinrich Olbers was thinking of the Titius-Bode law when he suggested this, pointing to the mathematical consistency of planetary orbits implicit in the now discredited theory. Robert Cromie wrote a novel called Crack of Doom in 1895 that imagined a fifth planet blown apart by futuristic warfare, a notion picked up by many early science fiction writers. Nowadays, that notion seems quaint, and asteroids more commonly appear in later SF either as resource stockpiles or terraformed habitats, perhaps hollowed out to become starships. Nonetheless, there was a flurry of interest in asteroids as home to extraterrestrial life in the 1930s (thus Clark Ashton Smith’s “Master of the Asteroid”), and actually none other than Konstantin...

read more

Amazing Worlds: A Review

I hardly ever watch a film version of a book I love because my mental images from the book get mangled by the film maker’s vision. There’s also the problem of changes to the plot, since film and novels are entirely different kinds of media. The outliers, though, are interesting (and I sure did love Bladerunner). And when I heard that AppleTV would do Asimov’s Foundation books, I resolved to watch because I was satisfied there was no way on Earth my book images would conflict with what a filmmaker might do. How could anyone possibly produce a film version of these books? Judging from the comments I see online, a lot of people realize how remote the AppleTV series is from the source. But here we get into something interesting about the nature of science fiction, and it’s something I have been thinking about since reading Keith Cooper’s book Amazing Worlds of Science Fiction and Science Fact. For the streaming variant of Foundation is visually gorgeous, and it pulls a lot of taut issues...

read more

Claudio Maccone (1948-2025)

In all too many ways, I wasn’t really surprised to learn that Claudio Maccone had passed away. I had heard the physicist and mathematician had been in ill health, and because he was a poor correspondent in even the best of times, I was left to more or less assume the worst. His death, though, seems to have been the result of an accident (I'm reminded of the fall that took Freeman Dyson’s life). Claudio and I spent many hours together, mostly at various conferences, where we would have lengthy meals discussing his recent work. Image: I took this photo of Claudio in Austin, TX in 2009. More on that gathering below. With degrees in both physics and mathematics from the University of Turin, Claudio received his PhD at King’s College London in 1980. His work on spacecraft design began in 1985, when he joined the Space Systems Group of Alenia Spazio, now Thales Alenia Space Italia, which is where he began to develop ideas ranging from scientific uses for the lunar farside, SETI detections...

read more

Generation Ships and their Consequences

Our ongoing discussion of the Project Hyperion generation ship contest continues to spark a wide range of ideas. For my part, the interest in this concept is deeply rooted, as Brian Aldiss’ Non-Stop (1958 in Britain, and then 1959 in the U.S. under the title Starship), was an early foray into science fiction at the novel length for me. Before that, I had been reading the science fiction magazines, mostly short stories with the occasional serial, and I can remember being captivated by the cover of a Starship paperback in a Chicago bookstore’s science fiction section. Of course, what was striking about Criterion Books’ re-naming of the novel is that it immediately gave away the central idea, which readers would otherwise have had to piece together as they absorbed Aldiss’ plot twists. Yes, this was a starship, and indeed a craft where entire generations would play out their lives. Alex Tolley and I were kicking the Chrysalis concept around and I was reminded how, having been raised in...

read more

Chrysalis: Designing a Generation Ship

If you want to explore the history of generation ships in science fiction, you might start with a story by Don Wilcox. Writing in 1940 for Amazing Stories, Wilcox conceived a slick plot device in his “The Voyage that Lasted 600 Years,” a single individual who comes out of hibernation once every century to see how the rest of the initial crew of 33 is handling their job of keeping the species going. Only room for one hibernation chamber, and this means our man becomes a window into social change aboard the craft. The breakdown he witnesses forces him into drastic action to save the mission. In a plot twist that anticipates A. E. van Vogt’s far superior “Far Centaurus,” Wilcox has his ragged band finally arrive after many generations at destination, only to find that a faster technology has long ago planted a colony there. Granted, Konstantin Tsiolkovsky had written about generation ships before Wilcox, and in a far more learned way. Fictional precedents like Laurence Manning's "The...

read more

A Candidate Gas Giant at Alpha Centauri A

Early next week I’ll be discussing the winning entry in Project Hyperion’s design contest to build a generation ship. But I want to sneak in the just announced planet candidate at Alpha Centauri A today, a good fit with the Hyperion work given that the winning entry at Hyperion is designed around a crewed expedition to nearby Proxima Centauri. Any news we get about this triple star system rises immediately to the top, given that it’s almost certainly going to be the first destination to which we dispatch instrumented unmanned probes. And one day, perhaps, manned ships, if designs like Hyperion’s ‘Chrysalis’ come to fruition. More on that soon, but for today, be aware that the James Webb Space Telescope is now giving us evidence for a gas giant orbiting Centauri A, the G-class star intriguingly similar to the Sun, which is part of the close binary that includes Centauri B, both orbited by the far more distant Proxima. Image: This artist’s concept shows what the gas giant orbiting...

read more

A Rotating Probe Launcher Alternative to TARS

Shortly before publishing my article on David Kipping’s TARS concept (Torqued Accelerator using Radiation from the Sun), I received an email from Centauri Dreams associate editor Alex Tolley. Alex had come across TARS and offered his thoughts on how to improve the concept for greater efficiency. The publication of my original piece has launched a number of comments that have also probed some of these areas, so I want to go ahead and present Alex’s original post, which was written before my essay got into print. All told, I’m pleased to see the continuing contribution of the community at taking an idea apart and pondering alternative solutions. It’s the kind of thing that gives me confidence that the interstellar effort is robust and continuing. by Alex Tolley Dr. Kipping’s TARS proposed system for accelerating probes to high velocity is both simple and elegant. With no moving parts other than any tether deployment and probe release, if it works, there is little that can fail during...

read more

A Space Catapult with Interstellar Potential

A new propulsion method with interstellar implications recently emerged on the arXiv site, and in an intriguing video on David Kipping’s Cool Worlds channel on YouTube. Kipping (Columbia University) has built a video production process that is second to none, but beyond the imagery is his ability to translate sophisticated mathematical concepts into clear language and engaging visuals. So while we’re going to discuss his new propulsion concept using the arXiv paper, don’t miss the video, where this novel new idea is artfully rendered. I was delighted to see the author invoking J.R.R. Tolkien in the video (though not in the paper), for he begins the Cool Worlds episode with some musings on interstellar flight and why it has come to engage so many of us. Tolkien devotees will already know the lovely term he used to explain our yearnings for something beyond ourselves: ‘sea-longing.’ It’s a kenning, to use the scholarly jargon, a metaphorical double construction that links two ideas....

read more

ETI in our Datasets?

A recent workshop at Ohio State raises a number of interesting questions regarding what is being referred to as ‘high energy SETI.’ The notion is that places where vast energies are concentrated might well attract an advanced civilization to power up projects on a Kardashev Type II or III scale. We wouldn’t necessarily know what kind of projects such a culture would build, but we might find evidence that these beings were at work, perhaps through current observations or, interestingly enough, through scans of existing datasets. Running June 23-24, the event was titled “Bridging Multi-Messenger Astronomy and SETI: The Deep Ends of the Haystack Workshop.” ‘Multi-messenger astronomy’ refers to observations that take in a wide range of inputs, from electromagnetic wavelengths to gravitational waves, from X-rays through gamma ray emissions. Extend this to SETI and you’re looking in all these areas, the broad message being that a SETI signature might show up in regions we have only...

read more

SETI at the Extremes

Science fiction has always provoked interesting research. After all, many of the scientists I’ve spoken with over the years have been science fiction readers, some of whom trace their career choices to specific novels (Poul Anderson’s Tau Zero is frequently mentioned, but so is Frank Herbert’s Dune, and there are many others). This makes sense because there is a natural tension in exoplanet studies growing out of the fact that in most cases, we can’t even see our targets. Instead, we detect them through non-visual methods. True, we can analyze planetary atmospheres for some gas giant planets, but we’re only beginning to drill down to the kind of biosignature searches that may eventually flag the presence of life. But fiction can paint a planet’s physics and visually explore its surface, modeling worlds in vast variety and sometimes spurring directions of thought that would otherwise remain unexplored. Consider Hal Clement, whose forays into planet-building included the remarkable...

read more

A Better Look at 3I/ATLAS

Just a short note, prompted by the release of new imagery of the intersellar object 3I/ATLAS by the Gemini North telescope in Hawaii. It's startling how quickly we've moved from the first pinpoint images of this comet to what we see below, which draws on Gemini North's Multi-Object Spectrograph to show us the tight (thus far) coma of the object, the gas and dust cloud enshrouding its nucleus. Changes here as the comet nears perihelion will teach us much about the object's composition and size. Some early estimates have the cometary nucleus as large as 20 kilometers, considerably larger than both 'Oumuamua and 2I/Borisov, the first two such objects detected. This is a figure that will doubtless be adjusted with continued observation. Image: Using the Gemini North telescope, astronomers have captured 3I/ATLAS as it makes its temporary passage through our cosmic neighborhood. These observations will help scientists study the characteristics of this rare object’s origin, orbit, and...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives