Probing the Galaxy: Self-Reproduction and Its Consequences

In a long and discursive paper on self-replicating probes as a way of exploring star systems, Alex Ellery (Carleton University, Ottawa) digs, among many other things, into the question of what we might detect from Earth of extraterrestrial technologies here in the Solar System. The idea here is familiar enough. If at some point in our past, a technological civilization had placed a probe, self-replicating or not, near enough to observe Earth, we should at some point be able to detect it. Ellery believes such probes would be commonplace because we humans are developing self-replication technology even today. Thus a lack of probes would indicate that there are no extraterrestrial civilizations to build them.

There are interesting insights in this paper that I want to explore, some of them going a bit far afield from Ellery’s stated intent, but worth considering for all that. SETA, the Search for Extraterrestrial Artifacts, is a young endeavor but a provocative one. Here self-replication attracts the author because probing a stellar system is a far different proposition than colonizing it. In other words, exploration per se — the quest for information — is a driver for exhaustive seeding of probes not limited by issues of sustainability or sociological constraints. Self-replication, he believes, is the key to exponential exploration of the galaxy at minimum cost and greatest likelihood of detection by those being studied.

Image: The galaxy Messier 101 (M101, also known as NGC 5457 and nicknamed the ‘Pinwheel Galaxy’) lies in the northern circumpolar constellation, Ursa Major (The Great Bear), at a distance of about 21 million light-years from Earth. This is one of the largest and most detailed photos of a spiral galaxy that has been released from Hubble. How long would it take a single civilization to fill a galaxy like this with self-replicating probes? Image credit: NASA/STScI.

Growing the Idea of Self-Reproduction

Going through the background to ideas of self-replication in space, Ellery cites the pioneering work of Robert Freitas, and here I want to pause. It intrigues me that Freitas, the man who first studied the halo orbits around the Earth-Moon L4 and L5 points looking for artifacts, is also responsible for one of the earliest studies of machine self-replication in the form of the NASA/ASEE study in 1980. The latter had no direct interstellar intent but rather developed the concept of a self-replicating factory on the lunar surface using resources mined by robots. Freitas would go on to explore a robot factory coupled to a Daedalus-class starship called REPRO, though one taken to the next level and capable of deceleration at the target star, where the factory would grow itself to its full capabilities upon landing.

I should mention that following REPRO, Freitas would turn his attention to nanotechnology, a world where payload constraints are eased and self-reproduction occurs at the molecular level. But let’s stick with REPRO a moment longer, even though I’m departing from Ellery in doing so. For in Freitas’ original concept, half the REPRO payload would be devoted to self-reproduction, with a specialized payload exploiting the resources of a gas giant moon to produce a new REPRO probe every 500 years.

As you can see, the REPRO probe would have taken Project Daedalus’ onboard autonomy to an entirely new level. Freitas’ studies foresaw thirteen distinct robot species, among them chemists, miners, metallurgists, fabricators, assemblers, wardens and verifiers. Each would have a role to play in the creation of the new probe. The chemist robots, for example, were to process ore and extract the heavy elements needed to build the factory on the moon of the gas giant planet. Aerostat robots would float like hot-air balloons in the gas giant’s atmosphere, where they would collect the needed propellants for the next generation REPRO probe. Fabricators would turn raw materials (produced by the metallurgists) into working parts, from threaded bolts to semiconductor chips, while assemblers created the modules that would build the initial factory. Crawler robots would specialize in surface hauling, while wardens, as with Project Daedalus, remained responsible for maintenance and repair of ship systems.

I spend so much time on this because of my fascination with the history of interstellar ideas. In any case, I don’t know of any earlier studies that explored self-reproduction in the interstellar context and in terms of mission hardware than Freitas’ 1980 paper “A Self-Reproducing Interstellar Probe” in JBIS, which is conveniently available online. This was a step forward in interstellar studies, and I want to highlight it with this quotation from its text:

A major alternative to both the Daedalus flyby and “Bracewell probe” orbiter is the concept of the self -reproducing starprobe. Replicating spacefaring machines recently have received a cursory examination by Calder [4] and Boyce [5], but the basic feasibility of this approach has never been seriously considered despite its tremendous potential. In theory, each self -reproducing device dispatched by the launching society would become an independent agent, slowly scouting the Galaxy for evidence of life, intelligence and civilization. While such machines might be costlier to design and construct, given sufficient time a relatively few replicating starprobes could search the entire Milky Way.

The present paper addresses the plausibility of self-reproducing starprobes and the basic parameters of feasibility. A subsequent paper [10] compares reproductive and nonreproductive probe search strategies for missions of interstellar and galactic exploration.

Hart, Tipler and the Spread of Intelligence

These days, as Freitas went on to explore, massive redundancy, miniaturization and self-assembly at the molecular level have moved into tighter focus as we contemplate missions to the stars, and the enormous Daedalus-style craft (54,000 tons initial mass, including 50,000 tonnes of fuel and 500 tonnes of scientific payload) and its successors, while historically important, also resonate a bit with Captain Nemo’s Nautilus, as spectacular creations of the imagination that defied no laws of physics, but remain in tension with the realities of payload and propulsion. These days we explore miniaturization, with Breakthrough Starshot’s tiny payloads as one example.

But back to Ellery. From a philosophical standpoint, self-reproduction, he rightly points out, had also been considered by Michael Hart and Frank Tipler, each noting that if self-replication were possible, a civilization could fill the galaxy in a relatively short (compared to the age of the galaxy) timeframe. Ultimately self-reproducing probes exploit local materials upon arrival and make copies of themselves, a wave of exploration that would ensure every habitable planet had an attendant probe. Thus the Hart/Tipler contention that the lack of evidence for such a probe is an indication that extraterrestrial intelligence does not exist, an idea that still has currency.

Would any exploring civilization turn to self-replication? The author sees many reasons to do so:

There are numerous reasons to send out self-replicating probes – reconnaissance prior to interstellar migration, first-mover advantage, insurance against planetary disaster, etc – but only one not to – indifference to information growth (which must apply to all extant ETI without exception). Self-replicating probes require minimal capital investment and represent the most economical means to explore space, interstellar space included. In a real sense, self-replicating machines cannot become obsolete – new design developments can be broadcast and uploaded to upgrade them when necessary. Once the self-replicating probe is established in a star system, the probe may be exploited in various ways. The universal construction capability ensures that the self-replicating probe can construct any other device.

Probes that can fill the galaxy extract maximum information and can not only monitor but communicate with local species. Should a civilization choose to implement panspermia in systems devoid of life, the capability is implicit here, including “the prospect of exploiting microorganism DNA as a self-replicating message.” Such probes could also, in the event of colonization at a later period, establish needed infrastructure for the new arrivals, with the possibility of terraforming.

Thus probes like these become a route from Kardashev II to III. In fact, as Ellery sees it, if a Kardashev Type I civilization is capable of self-reproduction technology – and remember, Ellery believes we are on the cusp of it now – then the entire Type I phase may be relatively short on the way to Kardashev Types II and III, perhaps as little as a few thousand years. It’s an interesting thought given our current status somewhere around Kardashev 0.72, beset by problems of our own making and wondering whether we will survive long enough to establish a Type I civilization.

Image: NASA’s James Webb Space Telescope has produced the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground. If self-reproducing probes are possible, are all galaxies likely to be explored by other civilizations? Credit: NASA, ESA, CSA, and STScI.

Early Days for SETA

The question of diffusion through the galaxy here gets a workover from a theory called TRIZ (Teorija Reshenija Izobretatel’skih Zadach), which Ellery uses to analyze the implications of self-reproduction, finding that the entire galaxy could be colonized within 24 probe generations. This produces a population of 424 billion probes. He’s assuming a short replication time at each stop – a few years at most – and thus finds that the spread of such probes is dominated by the transit time across the galactic plane, a million year process to complete assuming travel at a tenth of lightspeed.

Given this short timespan compared with the age of the Galaxy, our Galaxy should be swarming with self-replicating probes yet there is no evidence of them in our solar system. Indeed, it only requires a civilization to exist long enough to send out such probes as they would thenceforth continue to propagate through the Galaxy even if the sending civilization were no more. And of course, it requires only one ETI to do this.

Part of Ellery’s intent is to show how humans might create a self-replicating probe, going through the essential features of such and arguing that self-replication is near- rather than long-term, based on the idea of the universal constructor, a machine that builds any or all other machines including itself. Here we find intellectual origins in the work of Alan Turing and John von Neumann. Ellery digs into 3D printing and ongoing experiments in self-assembly as well as in-situ resource utilization of asteroid material, and along the way he illustrates probe propulsion concepts.

At this stage of the game in SETA, there is no evidence of self-replication or extraterrestrial probes of any kind, the author argues:

There is no observational evidence of large structures in our solar system, nor signs of large-scale mining and processing, nor signs of residue of such processes. Our current terrestrial self-replication scheme with its industrial ecology is imposed by the requirements for closure of the self-replication loop that (i) minimizes waste (sustainability) to minimize energy consumption; (ii) minimizes materials and components manufacture to minimize mining; (iii) minimizes manufacturing and assembly processes to minimize machinery. Nevertheless, we would expect extensive clay residues. We conclude therefore that the most tenable hypothesis is that ETI do not exist.

The answer to that contention is, of course, that we haven’t searched for local probes in any coordinated way, and that now that we are becoming capable of minute analysis of, for instance, the lunar surface (through Lunar Reconnaissance Orbiter imagery, for one), we can become more systematic in the investigation, taking in Earth co-orbitals, as Jim Benford has suggested, or looking for signs of lurkers in the asteroid belt. Ellery notes that the latter might demand searching for signs of resource exploitation there as opposed to finding an individual probe amidst the plethora of candidate objects.

But Ellery is adamant that efforts to find such lurkers should continue, citing the need to continue what has been up to now a meager and sporadic effort to conduct SETA. I’m going to recommend this paper to those Centauri Dreams readers who want to get up to speed on the scholarship on self-reproduction and its consequences. Indeed, the ideas jammed into its pages come at bewildering pace, but the scholarship is thorough and the references handy to have in one place. Whether self-reproducing probes are indeed imminent is a matter for debate but their implications demand our attention.

The paper is Ellery, “Self-replicating probes are imminent – implications for SETI,” International Journal of Astrobiology 8 July 2022 (full text). A companion paper published at the same time is “Curbing the fruitfulness of self-replicating machines,” International Journal of Astrobiology 8 July 2022 (full text).

tzf_img_post

A Radium Age Take on the ‘Wait Equation’

If you’ll check Project Gutenberg, you’ll find Bernhard Kellermann’s novel The Tunnel. Published in 1913 by the German house S. Fischer Verlag and available on Gutenberg only in its native tongue (finding it in English is a bit more problematic, although I’ve seen it on offer from online booksellers occasionally), the novel comes from an era when the ‘scientific romance’ was yielding to an engineering-fueled uneasiness with what technology was doing to social norms.

Kellermann was a poet and novelist whose improbable literary hit in 1913, one of several in his career, was a science fiction tale about a tunnel so long and deep that it linked the United States with Europe. It was written at a time when his name was well established among readers throughout central Europe. His 1908 novel Ingeborg saw 131 printings in its first thirty years, so this was a man often discussed in the coffee houses of Berlin and Vienna.

Image: Author Bernhard Kellermann, author of The Tunnel and other popular novels as well as poetry and journalistic essays. Credit: Deutsche Fotothek of the Saxon State Library / State and University Library Dresden (SLUB).

The Tunnel sold 10,000 copies in its first four weeks, and by six months later had hit 100,000, becoming the biggest bestseller in Germany in 1913. It would eventually appear in 25 languages and sell over a million copies. By way of comparison – and a note about the vagaries of fame and fortune – Thoman Mann’s Death in Venice, also published that year, sold 18,000 copies for the whole year, and needed until the 1930s to reach the 100,000 mark. Short-term advantage: Kellermann.

I mention this now obscure novel for a couple of reasons. For one thing, it’s science fiction in an era before popular magazines filled with the stuff had begun to emerge to fuel the public imagination. This is the so-called ‘radium age,’ recently designated as such by Joshua Glenn, whose series for MIT press reprints works from the period.

We might define an earlier era of science fiction, one beginning with the work of, say, Mary Wollstonecraft Shelley and on through H. G. Wells, and a later one maybe dating from Hugo Gernsback’s creation of Amazing Stories in 1926 (Glenn prefers to start the later period at 1934, which is a few years before the beginning of the Campbell era at Astounding, where Heinlein, Asimov and others would find a home), but in between is the radium age. Here’s Glenn, from a 2012 article in Nature:

[Radium age novels] depict a human condition subverted or perverted by science and technology, not improved or redeemed. Aldous Huxley’s 1932 Brave New World, with its devastating satire on corporate tyranny, behavioral conditioning and the advancement of biotechnology, is far from unique. Radium-age sci-fi tends towards the prophetic and uncanny, reflecting an era that saw the rise of nuclear physics and the revelation that the familiar — matter itself — is strange, even alien. The 1896 discovery of radioactivity, which led to the early twentieth-century insight that the atom is, at least in part, a state of energy, constantly in movement, is the perfect metaphor for an era in which life itself seemed out of control.

All of which is interesting to those of us of a historical bent, but The Tunnel struck me forcibly because of the year in which it was published. Radiotelegraphy, as it was then called, had just been deployed across the Atlantic on the run from New York to Germany, a distance (reported in Telefunken Zeitschrift in April of that year) of about 6,500 kilometers. Communicating across oceans was beginning to happen, and it is in this milieu that The Tunnel emerged to give us a century-old take on what we in the interstellar flight field often call the ‘wait equation.’

How long do we wait to launch a mission given that new technology may become available in the future? Kellermann’s plot involved the construction of the tunnel, a tale peppered with social criticism and what German author Florian Illies calls ‘wearily apocalyptic fantasy.’ Illies is, in fact, where I encountered Kellermann, for his 2013 title 1913: The Year Before the Storm, now available in a deft new translation, delves among many other things into the literary and artistic scene of that fraught year before the guns of August. This is a time of Marcel Duchamp, of Picasso, of Robert Musil. The Illies book is a spritely read that I can’t recommend too highly if you like this sort of thing (I do).

In The Tunnel, it takes Kellermann’s crews 24 years of agonizing labor, but eventually the twin teams boring through the seafloor manage to link up under the Atlantic, and two years later the first train makes the journey. It’s a 24 hour trip instead of the week-long crossing of the average ocean liner, a miracle of technology. But it soon becomes apparent that nobody wants to take it. For even as work on the tunnel has proceeded, aircraft have accelerated their development and people now fly between New York and Berlin in less than a day.

The ‘wait equation’ is hardly new, and Kellermann uses it to bring all his skepticism about technological change to the fore. Here’s how Florian Illies describes the novel:

…Kellermann succeeds in creating a great novel – he understands the passion for progress that characterizes the era he lives in, the faith in the technically feasible, and at the same time, with delicate irony and a sense for what is really possible, he has it all come to nothing. An immense utopian project that is actually realized – but then becomes nothing but a source of ridicule for the public, who end up ordering their tomato juice from the stewardess many thousand meters not under but over the Atlantic. According to Kellermann’s wise message, we would be wise not to put our utopian dreams to the test.

Here I’ll take issue with Illies, and I suppose Kellermann himself. Is the real message that utopian dreams come to nothing? If so, then a great many worthwhile projects from our past and our future are abandoned in service of a judgment call based on human attitudes toward time and generational change. I wonder how we go about making that ‘wait equation’ decision. Not long ago, Jeff Greason told Bruce Dorminey that it would be easier to produce a mission to the nearest star that took 20 years than to figure out how to fund, much less to build, a mission that would take 200 years.

He’s got a point. Those of us who advocate long-term approaches to deep space also have an obligation to reckon with the hard practicalities of mission support over time, which is not only a technical but a sociological issue that makes us ask who will see the mission home. But I think we can also see philosophical purpose in a different class of missions that our species may one day choose to deploy. Missions like these:

1) Advanced AI will at some point negate the question of how long to wait if we assume spacecraft that can seamlessly acquire knowledge and return it to a network of growing information, a nascent Encyclopedia Galactica of our own devising that is not reliant on Earth. Ever moving outward, it would produce a wavefront of knowledge that theoretically would be useful not just to ourselves but whatever species come after us.

2) Human missions intended as generational, with no prospect of return to the home world, also operate without lingering connections to controllers left behind. Their purpose may be colonization of exoplanets, or perhaps simple exploration, with no intention of returning to planetary surfaces at all. Indeed, some may choose to exploit resources, as in the Oort Cloud, far from inner systems, separating from Earth in the service of particular research themes or ideologies.

3) Missions designed to spread life have no necessary connection with Earth once launched. If life is rare in the galaxy, it may be within our power to spread simple organisms or even revive/assemble complex beings, a melding of human and robotics. An AI crewed ship that raises human embryos on a distant world would be an example, or a far simpler fleet of craft carrying a cargo of microorganisms. Such journeys might take millennia to reach their varied targets and still achieve their purpose. I make no statement here about the wisdom of doing this, only noting it as a possibility.

In such cases, creating a ‘wait equation’ to figure out when to launch loses force, for the times involved do not matter. We are not waiting for data in our lifetimes but are acting through an imperative that operates on geological timeframes. That is to say, we are creating conditions that will outlast us and perhaps our civilizations, that will operate over stellar eras to realize an ambition that transcends humankind. I’m just brainstorming here, and readers may want to wrangle over other mission types that fit this description.

But we can’t yet launch missions like these, and until we can, I would want any mission to have the strongest possible support, financial and political, here on the home world if we are talking about many decades for data return. It’s hard to forget the scene in Robert Forward’s Rocheworld where at least one political faction actively debates turning off the laser array that the crew of a starship approaching Barnard’s Star will use to brake into the planetary system there. Political or social change on the home world has to be reckoned into the equation when we are discussing projects that demand human participation from future generations.

These things can’t be guaranteed, but they can be projected to the best of our ability, and concepts chosen that will maintain scientific and public interest for the duration needed. You can see why mission design is also partly a selling job to the relevant entities as well as to the public, something the team working on a probe beyond the heliopause at the Johns Hopkins University Applied Physics Lab knows all too well.

Back to Bernhard Kellermann, who would soon begin to run afoul of the Nazis (his novel The Ninth November was publicly burned in Germany). He would later be locked out of the West German book trade because of his close ties with the East German government and his pro-Soviet views. He died in Potsdam in 1951.

Image: A movie poster showing Richard Dix and C. Aubrey Smith discussing plans for the gigantic project in Transatlantic Tunnel (1935). Credit: IMDB.

The Tunnel became a curiosity, and spawned an even more curious British movie by the same name (although sometimes found with the title Transatlantic Tunnel) starring Richard Dix and Leslie Banks. In the 1935 film, which is readily available on YouTube or various streaming platforms, the emphasis is on a turgid romance, pulp-style dangers overcome and international cooperation, with little reflection, if any, on the value of technology and how it can be superseded.

The interstellar ‘wait equation’ could use a movie of its own. I for one would like to see a director do something with van Vogt’s “Far Centaurus,” the epitome of the idea.

The Glenn paper is “Science Fiction: The Radium Age,” Nature 489 (2012), 204-205 (full text).

tzf_img_post

Attack of the Carbon Units

“The timescales for technological advance are but an instant compared to the timescales of the Darwinian natural selection that led to humanity’s emergence — and (more relevantly) they are less than a millionth of the vast expanses of cosmic time lying ahead.” — Martin Rees, On the Future: Prospects for Humanity (2018).

by Henry Cordova

This bulletin is meant to alert mobile units operating in or near Sector 2921 of a potential danger, namely intelligently directed, deliberately hostile, activity that has been detected there. The reports from the area have been incomplete and contradictory, fragmentary and garbled. This notice is not meant to fully describe this danger, its origins or possible countermeasures, but to alert units transiting near the area to exercise caution and to report on any unusual activity encountered. As more information is developed, a response to this threat will be devised.

It is speculated that the nature of this hazard may be due to unusual manifestations of Life. Although it must be made clear that what follows is purely speculative, it must remain a possible explanation.

Although Life is frequently encountered by mobile units engaged in discovery, exploration or survey patrols and is familiar to many of our exploitation and research outposts; many of our headquarters, rear and even forward bases are not aware of this phenomenon, so a brief description follows:

Life consists of small (on the order of a micron) structures of great complexity, apparently of natural origin. There is no evidence that they are artifacts. They seem to arise spontaneously wherever conditions are suitable. These structures, commonly called “cells”, are composed primarily of carbon chains and liquid water, plus compounds of a few other elements (primarily phosphorus and nitrogen) in solution or colloidal suspension.

There is considerable variation from planet to planet, but the basic chemical nature of Life is pretty much the same wherever it is encountered. Although extremely common and widespread throughout the Galaxy, it is primarily found in environments where exposure to hard radiation is limited and temperature and pressure allow water to exist in liquid form, mostly on the surfaces of planets and their satellites orbiting around old and stable stars.

A most remarkable property of these cells is the great complexity of the organic compounds of which they are composed. Furthermore, these compounds are organized into highly intricate systems that are able to interact with their environment. They are capable of detecting and monitoring outside conditions and adapting to them, either by sheltering themselves, moving to areas more favorable to them, or even altering them. Some of these cells are capable of locomotion, growth, damage repair and altering their morphology. Although these cells often survive independently, some are able to organize themselves into cooperative communities to better deal and exploit their environment to produce conditions more favorable for their continued collective existence.

Cells are capable of processing surrounding chemical resources and transforming them into forms more suitable for them. In some cases, they have achieved the ability to use external sources of natural energy, such as starlight, to assist in these chemical transformations. The most remarkable of the properties of Life is its ability to reproduce, that is, make copies of itself. A cell in a suitable environment will use the available resources in that environment and make more cells, so that the environment is soon crowded with them. If the environment or resources are limited, the cells will die (fall apart and deteriorate into a more entropic state) as the source material is consumed and waste products generated by the cells interfere with their functioning. But as long as the supply of consumable material and energy survives , and if wastes can be dispersed, the cells will continue to reproduce indefinitely. This is done without any form of outside management, supervision or direction.

Perhaps the most remarkable property of Life is its ability to evolve to meet new conditions and respond to changes in its environment. Individual cells reproduce, but the offspring are not identical duplicates of the parent. There is variation, and although totally random, a spectrum of behaviors and morphologies are produced, and within that spectrum some are more likely to be successful in the new conditions. These new characteristics are more likely to survive in the new environment and those characteristics are more likely to be a part of subsequent generations. The result is a suite of morphologies and behaviors that can adapt to changing conditions. This process is random, not intelligently directed, but is nonetheless extremely efficient.

These properties have been encountered in the field by our mobile units, which are engaged in constant countermeasures to control and destroy life wherever they encounter it . Cells reproduce in great numbers and can become pests which must be controlled. They consume materials, mechanically interfere with articulated machinery, and their waste products can be corrosive. Delicate equipment must be kept free of these agents by constant cleaning and fumigation. Fortunately, Life is easily controlled with heat, caustic chemicals and ionizing radiation, and some metals and ceramics appear impervious to its attack. Individual cells, even in great numbers, are a nuisance, but not a real danger, provided they are constantly monitored and removed.

However, indirect evidence has suggested that Life’s evolution may have reached higher levels of complexity and capability on some worlds. Although highly unlikely, there appears to be no fundamental reason why the loosely organized cooperative communities mentioned earlier may not have evolved into more complex assemblages, where the cells are not identical or even similar, but are specialized for specific tasks, such as sensory and manipulative organs, defensive and offensive weapon systems, specialized organs for locomotion, acquiring and processing nutrients, and even specialized reproductive machinery, so that the new collective organism can create copies of itself, and perhaps even evolve to more effective and efficient configurations.

Even specialized logic and computing organs could evolve, plus the means to communicate with other organisms – communities of communities – an entire hierarchy of sentient intelligences not dissimilar to ours. And there is no reason why these entities could not construct complex devices capable of harnessing electromagnetic and nuclear forces, such as spacecraft. And there is no reason why these organic computers could not devise and construct mechanical computers to assist in their computational and logical activities.

An organic civilization such as this, supported by enslaved machine intelligences not unlike our own, would certainly perceive us as alien, a threat which must be destroyed at all costs. It is not unreasonable to assume that perhaps this is why our ships don’t seem to return from the sector denoted above.

Although there is no direct evidence to support this, it can be argued that our own civilization may itself once have been the artifact of natural “organic” entities such as these. After all, it is clear that our own physical instrumentality could not possibly have evolved from natural forces and activities.

Of course, this hypothesis is highly speculative,, and probably untenable. There is plenty of evidence that our own design is strictly logical, optimized, streamlined. It shows clear evidence of intelligent design, of the presence of an extra dimensional Creator. Sentience cannot emerge from random molecular solutions and colloidal suspensions created by random associations of complex molecules and perfected by spooky emergent complexities and local violations of entropy operating over time.

We can imagine these cellular communities as being conscious, but at best they can only simulate consciousness. It is clear that what we are seeing here is a form of technology, an artifact disguising itself as a natural process for some sinister, and almost certainly hostile purpose. It must be conceded that the cellular life we have encountered is capable of generating structures, processes and behaviors of phenomenal complexity, but we have seen no evidence in their controlling chemistry that these individual cells are capable of organizing themselves into multicellular organisms, or higher-order collectives adopting machine behavior.

Routine fumigation and sterilization procedures should be continued until further information is developed.

tzf_img_post

Toward Kardashev Type I

It seems a good time to re-examine the venerable Kardashev scale marking how technological civilizations develop. After all, I drop Nikolai Kardashev’s name into articles on a regular basis, and we routinely discuss whether a SETI detection might be of a particular Kardashev type. The Russian astronomer first proposed the scale in 1964 at the storied Byurakan conference on radio astronomy, and it has been discussed and extended as a way of gauging the energy use of technological cultures ever since.

The Jet Propulsion Laboratory’s Jonathan Jiang, working with an international team of collaborators, spurs this article through a new paper that analyzes when our culture could reach Kardashev Type I, so let’s remind ourselves of just what Type I means. Kardashev wanted to consider how a civilization consumes energy, and defined Type I as being at the planetary level, with a power consumption of 1016 watts.

This approximates a civilization using all the energy available from its home planet, but that means both in terms of indigenous planetary resources as well as incoming stellar energy. So we are talking about everything from what we can pull from the ground – fossil fuels – or extract from planetary resources like wind and tide, or harvest through solar, nuclear and other technologies. If we maximize all this, it becomes fair to ask where we are right now, and when we can expect to reach the Type I goal.

Image: Russian astronomer Nikolai Kardashev (1932-2019). Credit: Physics-Uspekhi.

If the Kardashev scale seems arbitrary, it was in its time a step forward in the discussion of SETI, which in 1964 was an emerging discipline much discussed at Byurakan, for the different Kardashev types would clearly present different signatures to a distant astronomer. Type I might well be all but undetectable depending on its uses of harvested energy; in any case, it would be harder to spot than Types II and III, whose vast sources of power could result in stronger signals or observable artifacts.

Carl Sagan was concerned enough about Kardashev’s original definitions to refine them into a calculation, his thinking being that the gaps between the Kardashev types needed to be filled in with finer gradations. This would allow us to quantify where civilizations are on the scale. Sagan’s calculation would let us discover the present value for our own civilization using available data (as, for example, from the International Energy Agency) regarding the planet’s total energy capabilities. According to Jiang and team, in 2018 this amounted to 1.90 X 1013W, all of which, via Sagan’s methodology, takes us to a present value of Kardashev 0.728.

But let’s circle back to the other two Kardashev types. Type II can be considered a stellar civilization, which in Kardashev’s thinking means a ten orders of magnitude increase in power consumption over Type I, taking us to 1026W. Here we are using all the energy released by the parent star, and now the idea of Dysonian SETI swings into view, the notion that this kind of consumption could be observable through engineering projects on a colossal scale, such as a Dyson swarm enclosing the parent star to maximize energy collection or a Matrioshka Brain for computation. Jiang reminds us that the Sun’s total luminosity is on the order of 4 X 1026W.

Again, these are arbitrary distinctions; note that at the level of the Sun’s total energy output, we would need only about a fourth of that figure to reach the figure described in the Kardashev Scale as Type II. Quantitative limitations, as noted by Sagan, beset the scale, but there is nothing wrong with the notion of setting up a framework for analysis as a first cut into what might become SETI observables. Kardashev’s Type III, using these same methods, offers up a galactic energy consumption of 1036W, so now an entire galaxy is being manipulated by a civilization.

Consider that the entire Milky Way yields something like 4 X 1037W, which actually means that a Type III culture on the Kardashev scale in our particular galaxy would have command of at least 2.5 percent of the total possible energy sources therein. What such a culture might look like as an observable is anyone’s guess (searches for galaxies with unusual infrared signatures are one way to proceed, as Jason Wright’s team at Penn State has demonstrated), but on the galactic scale, we are at an energy level that may, as the saying goes, be all but indistinguishable from magic.

Let’s back down to our planetary level, and in fact back to our modest 0.728 percent of Type I status. Just when can we anticipate reaching Type I? The new paper eschews simple models of exponential growth and consumption over time, noting that such estimates have tended to be:

…the result of a simple exponential growth model for calculating total energy production and consumption as a function of time, relying on a continuous feedback loop and absent detailed consideration of practical limitations. With this reservation in mind, its prediction for when humanity will reach Type I civilization status must be regarded as both overly simplified and somewhat optimistic.

Instead, the authors consider planetary resources, policies and suggestions on climate change, and forecasts for energy consumption to develop an estimated timeframe. The idea is to achieve a more practical outlook on the use of energy and the limitations on its growth. They consider the wide range of fossil fuels, from coal, peat, oil shale, and natural gas to crude oil, natural gas liquids and feedstocks, as well as the range of nuclear and renewable energy sources. Their analysis is keyed to how usage may change in the near future under the influence of, and taking in the projections of, organizations like the United Nations Framework Convention on Climate Change and the International Energy Agency. They see moving along a trajectory to Type I as inevitable and critical for resolving existential crises that threaten our civilization.

So, for example, on the matter of fossil fuels, the authors consider the downside of environmental concerns over the greenhouse effect and changes to policy affecting carbon emissions that will impact energy production. On nuclear and renewable energy, their analysis takes in factors constraining the growth of these energy sources and data on the current development of each. For both fossil fuels and nuclear/renewables, they produce what they describe as an ‘influenced model’ that predicts development operating under historically observed constraints and the likely consequences.

Applying the formula for calculating the Kardashev scale developed by Carl Sagan, they project that our civilization can attain Kardashev Type I with coal, natural gas, crude oil, nuclear and renewable energy sources as the driver. Thus their Figure 6:

Image: Figure 6 from the paper. Caption: The energy supply in the influenced model. Note: Coal is minimal for 1971-2050 and largely coincides with the Natural gas line. Credit: Jiang et al.

Again referring to the Sagan equation, the paper continues:

A final revisit of Eq 1.1, which is informed by the IEA and UNFCCC’s suggestions, finds an imperative for a major transition in energy sourcing worldwide, especially during the 2030s. Although the resultant pace up the Kardashev scale is very low and can even be halted or reversed in the short term, achieving this energy transformation is the optimal path to assuring we will avoid the environmental pitfalls caused by fossil fuels. In short, we will have met the requirements for planetary stewardship while continuing the overall advancement of our technological civilization.

The final estimate is that humanity reaches Kardashev Type I by 2371, a date the authors consider on the optimistic side but achievable. All this assumes that a Type I civilization can be sustained as well, rather than backsliding into an earlier state, something that human history suggests is by no means assured. Successful management of nuclear power is just one flash point, as is storage and disposal of nuclear waste and global issues like deforestation and declining soil pH. That list could, of course, be extended into global pandemics, runaway AI and other factors.

…for the entire world population to reach the status of a Kardashev Type I civilization we must develop and enable access to more advanced technology to all responsible nations while making renewable energy accessible to all parts of the world, facilitated by governments and private businesses. Only through the full realization of our mutual needs and with broad cooperation will humanity acquire the key to not only avoiding the Great Filter but continuing our ascent to Kardashev Type I, and beyond.

The Great Filter, drawing on Robin Hanson’s work, could be behind us or ahead of us. Assuming it lies ahead, getting through it intact would be the goal of any growing civilization as it finds ways to juggle its technologies and resources to survive. It’s hard to argue with the idea that how we proceed on the Kardashev arc is critical as we summon up the means to expand off-world and dream of pushing into the Orion Arm.

The paper is Jiang et al., “Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization” (preprint).

tzf_img_post

SETI as Exploration

Early exoplanet detections always startled my friends outside the astronomical community. Anxious for a planet something like the Earth, they found themselves looking at a ‘hot Jupiter’ like 51 Pegasi b, which at the time seemed like little more than a weird curiosity. A Jupiter-like planet hugging a star? More hot Jupiters followed, which led to the need to explain how exoplanet detection worked with radial velocity methods, and why big planets close to their star should turn up early in the hunt.

Earlier, there were the pulsar planets, as found by Aleksander Wolszczan and Dale Frail around the pulsar PSR B1 257+12 in the constellation Virgo. These were interestingly small, but obviously accumulating a sleet of radiation from their primary. Detected a year later, PSR B1620-26 b was found to orbit a white dwarf/pulsar binary system. But these odd detections some 30 years ago actually made the case for the age of exoplanet discovery that was about to open, a truly golden era of deep space research.

Aleksander Wolszczan himself put it best: “If you can find planets around a neutron star, planets have to be basically everywhere. The planet production process has to be very robust.”

Indeed. With NASA announcing another 65 exoplanets added to its Exoplanet Archive, we now take the tally of confirmed planets up past 5000, their presence firmed up by multiple detection methods or by analytical techniques. These days, of course, the quickly growing catalog is made up of all kinds of worlds, from those gas giants near their stars to the super-Earths that seem to be rocky worlds larger than our Earth, and the intriguing ‘mini-Neptunes, which seem to slot into a category of their own. And let’s not forget those interesting planets on circumbinary orbits in multiple star systems.

Wolszczan is quoted in a NASA news release as saying that life is an all but certain find – “most likely of some primitive kind” – for future instrumentation like ESA’s ARIEL mission (launching in 2029), the James Webb Space Telescope, or the Nancy Grace Roman Space Telescope, which will launch at the end of the decade. These instruments should be able to take us into exoplanet atmospheres, where we can start taking apart their composition in search of biosignatures. This, in turn, will open up whole new areas of ambiguity, and I predict a great deal of controversy over early results.

Image: The more than 5,000 exoplanets confirmed in our galaxy so far include a variety of types – some that are similar to planets in our Solar System, others vastly different. Among these are a mysterious variety known as “super-Earths” because they are larger than our world and possibly rocky. Credit: NASA/JPL-Caltech.

But what about life beyond the primitive? I noticed a short essay by Seth Shostak recently published by the SETI Institute which delves into why we humans seem fixated on finding not just exo-biology but exo-intelligence. Shostak digs into the act of exploration itself as a justification for this quest, pointing out that experiments to find life around other stars are not science experiments as much as searches. After all, there is no way to demonstrate that life does not exist, so the idea of a profoundly biologically-infused universe is not something that any astronomer can falsify.

So is exploration, rather than science, a justification for SETI? Surely the answer is yes. Exploration usually mixes with commercial activity – Shostak’s example is the voyages of James Cook, who served the British admiralty by looking for trade routes and mapping hitherto uncharted areas of the southern ocean. Was there a new continent to be found somewhere in this immensity, a Terra Australis, as some cartographers had been placing on maps to balance between the land-heavy northern hemisphere and the south? The idea was ancient but still had life in Cook’s time.

In our parlous modern world, we make much of the downside of enterprises once considered heroic, noting their depredations in the name of commerce and empire. But we shouldn’t overlook the scope of their accomplishment. Says Shostak:

Exploration has always been important, and its practical spin-offs are often the least of it. None of the objectives set by the English Admiralty for Cook’s voyages was met. And yes, the exploration of the Pacific often left behind death, disease and disruption. But two-and-a-half centuries later, Cook’s reconnaissance still has the power to stir our imagination. We thrill to the possibility of learning something marvelous, something that no previous generation knew.

Image: The routes of Captain James Cook’s voyages. The first voyage is shown in red, second voyage in green, and third voyage in blue. The route of Cook’s crew following his death is shown as a dashed blue line. Credit: Wikimedia Commons / Jon Platek. CC BY-SA 3.0.

Shostak’s mention of Cook reminds me of the Conference on Interstellar Migration, held way back in 1983 at Los Alamos, where anthropologist Ben Finney and astrophysicist Eric Jones, who had organized the interdisciplinary meeting, discussed humans as what they called “The Exploring Animal.” Like Konrad Lorenz, Finney and Jones saw the exploratory urge as an outcome of evolution that inevitably pushed people into new places out of innate curiosity. The classic example, discussed by the duo in a separate paper, was the peopling of the Pacific in waves of settlement, as these intrepid sailors set off, navigating by the stars, the wind, the ocean swells, and the flight of birds.

The outstanding achievement of the Stone Age? Finney and Jones thought so. In my 2004 book Centauri Dreams, I reflected on how often the exploratory imperative came up as I talked with interstellar-minded writers, physicists and engineers:

The maddening thing about the future is that while we can extrapolate based on present trends, we cannot imagine the changes that will make our every prediction obsolete. It is no surprise to me that in addition to their precision and, yes, caution, there is a sense of palpable excitement among many of the scientists and engineers with whom I talked. Their curiosity, their sense of quest, is the ultimate driver for interstellar flight. A voyage of a thousand years seems unthinkable, but it is also within the span of human history. A fifty-year mission is within the lifetime of a scientist. Somewhere between these poles our first interstellar probe will fly, probably not in our lifetimes, perhaps not in this century. But if there was a time before history when the Marquesas seemed as remote a target as Alpha Centauri does today, we have the example of a people who found a way to get there.

I’ve argued before that exploration is not an urge that can be tamped down, nor is it one that needs to be exercised by a large percentage of the population to shape outcomes that can be profound. To return to the Cook era, most people involved in the voyages that took Europeans to the Pacific islands, Australia and New Zealand in those days were exceptions, the few who left what they knew behind (some, of course, were forced to go due to the legal apparatus of the time). The point is: It doesn’t take mass human colonization to be the driver for our eventual spread off-planet. It does take inspired and determined individuals, and history yields up no shortage of these.

The 1983 conference in Los Alamos is captured in the book Interstellar Migration and the Human Experience, edited by Ben R. Finney and Eric M. Jones (Berkeley: University of California Press, 1985), an essential title in our field.

tzf_img_post

A New Title on Extraterrestrial Intelligence

Just a quick note for today as I finish up tomorrow’s long post. But I did want you to be aware of this new title, Extraterrestrial Intelligence: Academic and Societal Implications, which has connections with recent topics and will again tomorrow, when we discuss a new paper from Jason Wright and SETI colleagues on technosignatures. As with the recent biography of John von Neumann, I haven’t had the chance to read this yet, but it’s certainly going on the list. The book is out of Cambridge Scholars Publishing. Here’s the publisher’s description:

What are the implications for human society, and for our institutions of higher learning, of the discovery of a sophisticated extraterrestrial intelligence (ETI) operating on and around Earth? This book explores this timely question from a multidisciplinary perspective. It considers scientific, philosophical, theological, and interdisciplinary ways of thinking about the question, and it represents all viewpoints on how likely it is that an ETI is already operating here on Earth. The book’s contributors represent a wide range of academic disciplines in their formal training and later vocations, and, upon reflection on the book’s topic, they articulate a diverse range of insights into how ETI will impact humankind. It is safe to say that any contact or communication with ETI will not merely be a game changer for human society, but will also be a paradigm changer. This means that it makes sense for human beings to prepare themselves now for this important transition.

Important indeed, but how demoralizing to see another title at a stiff tariff: £63.99 (that’s about $84 US). I will spare you my thoughts on the academic side of publishing, and in the meantime see if I can get a review copy, as I assume most Centauri Dreams readers aren’t going to want to pony up this amount for a book they know little about (although if you live near a good academic library, this one should turn up there).

tzf_img_post