Finding Earth-size planets around other stars is a long-cherished goal, and new results from Geoffrey Marcy and Andrew Howard (UC Berkeley) give us reason to think they're out there in some abundance. As reported in Science, the astronomers have used the 10-meter Keck telescopes in Hawaii to make radial velocity measurements of 166 G and K-class stars within 80 light years of Earth. The resulting five years of data suggest that about one in every four stars like the Sun could have Earth-size planets, although none has thus far been detected. "Of about 100 typical Sun-like stars, one or two have planets the size of Jupiter, roughly six have a planet the size of Neptune, and about 12 have super-Earths between three and 10 Earth masses," said Howard, a research astronomer in UC Berkeley's Department of Astronomy and at the Space Sciences Laboratory. "If we extrapolate down to Earth-size planets -- between one-half and two times the mass of Earth -- we predict that you'd find about 23...
‘Snowball Growth’ and the Centauri Stars
With three groups now looking hard at Alpha Centauri for planets, let’s hope our nearest stars don’t do for us what Gliese 581 has. First we had a habitable planet in Gl 581c, then we didn’t. Then Gl 581d looked a bit promising, and may skirt the outer edges of the habitable zone, although the jury is still out. Gl 581g looked to be the winner, the fabled ‘Goldilocks’ planet, but now the evidence for it seems weak and its existence is called very much into doubt. Gl 581 keeps dealing out winners and then calling them back, a frustrating period for all concerned. What we’d like to find at Alpha Centauri, then, is something unambiguous. But while we wait for answers, the issue of how planets form in close binary systems like Alpha Centauri is under the microscope. Centauri A and B have a mean separation of 23 AU, closing to within 11.2 AU (think of another star as close to ours as Saturn) and receding up to 35.6 AU (roughly Pluto’s distance). Proxima is much further out at 13,000 AU...
Planet Formation Around Close Binaries
Planets around binary stars fascinate me, doubtless because of Alpha Centauri’s proximity and the question of whether there are planets there. About ten percent of the planets we’ve found around main sequence stars are found in binary systems, and most of these binaries have wide separations, in the range of 100 to 300 AU. But, like Alpha Centauri, close binaries remain promising targets. I’m looking at a new paper by Andras Zsom, Zsolt Sándor and Kees Dullemond (Max-Planck-Institute für Astronomie) dealing with early stage planet formation in binaries, and they’re quick to note that planets in close binary systems put constraints on planet formation theories. After all, if we find planets in these systems, our planet forming theories have to produce satisfactory explanations for their existence. Does core accretion, then, work in these environments? We can look to close binaries with planets, systems like Gamma Cephei (separation 18.5 AU), GL 86 (18.4 AU), HD 41004 (23 AU) and HD...
Losing SIM: Thoughts on Exoplanetary Strategy
For all the excitement the Kepler mission has generated, we sometimes forget its limitations. Kepler is engaged in a transit hunt for exoplanets that will help us identify not just gas giants but planets the size of our own. But it's a brute-force method, looking at a huge number of stars to identify the few whose planetary systems are aligned properly for us to see transits. And the necessary limitation is that when we do find terrestrial-sized worlds, we'll be unable to do much by way of follow-up, because most of those planets will be thousands of light years away. This is not to diminish Kepler's critical work (nor that of CoRoT), for in no other way are we currently gaining this kind of overview of the planetary environment around a wide range of stars. But Philip Horzempa reminds us in a recent post on The Space Review that we have follow-up missions in the pipeline that are now losing their funding. Specifically, the Space Interferometry Mission (known as SIM Lite in its last...
Gl 581g: Rocky and Potentially Habitable
What exactly does the word 'habitable' mean? The question comes to mind because of two things, the first being the media buzz over Gliese 581g, now widely described as the first potentially habitable planet we've found. The second is Paul Davies' presentation yesterday at the International Astronautical Congress in Prague, where Davies was careful to differentiate between 'habitable' and 'inhabited.' More on the latter in a moment. Let's look first at this outstanding find, two new planets in the Gliese 581 system discovered through the unflagging efforts of the Lick-Carnegie team. A World in the Zone? The beauty of Gl 581, of course, is not only that it has yielded a storehouse of planets (six known at present), but that these worlds are on nearly circular orbits, and several have caught our eye re habitability before. The current buzz seems a bit tamer than the one that greeted the announcement of Gl 581c, at the time thought to be capable of sustaining liquid water on its surface,...
Light Off Distant Oceans
While we're this early in the game of detecting life signs from distant planets, it makes sense to focus on surface habitability, which is why oceans are so interesting. Sure, we can imagine potential biospheres under the ice of a Europa or even an Enceladus, but given the state of our instrumentation and the distance of our target, going after the most likely catch makes sense, and that means looking for oceans. Significant work from the EPOXI mission has given us some of the parameters for studying a planet like ours using multi-wavelength photometry. EPOXI, you'll recall, is the extended mission of the Deep Impact spacecraft that drove an impactor into Comet Tempel 1 in 2005 and is now enroute to Comet Hartley 2. Its views of Earth are being used to help scientists prepare for studies of terrestrial worlds around other stars. Planets with large bodies of water should reflect light from their star differently than dry planets, and as the observed planet goes through its phases as...
Micro ‘Bots’ to the Stars?
Debra Fischer (Yale University) takes a brief look at the next thirty years as part of a Discover Magazine 30th anniversary section, an appearance notable more for what Fischer doesn't say than what she does. Any hint of how her radial velocity studies of the Alpha Centauri system are proceeding? I wouldn't have expected any, I'll admit, and Fischer says nothing about it, but the betting here is that we'll have an announcement within the next year either by Fischer or Michel Mayor's team either giving us a planetary discovery or sharply constraining the alternatives. What Fischer does speculate on beyond the notion that we'll detect life in exoplanetary atmospheres is that interstellar probes will eventually fly. You may recall Robert Freitas' notion of interstellar probes loaded with artificial intelligence and as tiny as sewing needles, scattered into the galaxy in their hordes to investigate potentially habitable worlds. Fischer, too, likes miniaturization, which does so much to...
Of ‘Hot Jupiters’ and Short Lifetimes
Globular clusters held an early fascination for me, and I guess anyone who encounters these rich cities of stars for the first time wonders what it would be like to be on a planet deep inside one of them. The clusters appear to be distributed in a spherical halo around the galactic center, ancient collections of stars much lower in heavy elements than stars in the galactic disk (although globular clusters in some other Local Group galaxies seem younger). The thought of the night sky on a planet embedded in such a place makes the mind reel, star upon star upon star filling the view. Image: The globular cluster 47 Tucanae, the second brightest globular cluster orbiting the Milky Way (behind Omega Centauri). Imagine the night sky deep within such a cluster. Credit: South African Astronomical Observatory. But a new paper suggests that at least one category of planets may be rare in such clusters. It follows up on an earlier survey of the cluster 47 Tucanae which examined some 34,000...
ExoClimes 2010: Exoplanetary Atmospheres
The ExoClimes 2010 conference ("Exploring the Diversity of Planetary Atmospheres") is well in progress in Exeter (UK) as I write, with its talks now being posted online and the hope that video of the presentations will soon be available on the conference site. Already the latest lingo is in the air, as in 'Hermean,' a term used by Brian Jackson (NASA GSFC) to describe hot, rocky exoplanets with tenuous atmospheres. The analogy is with Mercury, though these are even hotter places with magma oceans and melted surfaces, leading to what Jackson calls a 'rock vapor atmosphere' that just might be visible given sufficient spectral resolution. But what catches my eye this morning, as I survey the ongoing conference buzz online from an ocean away, is Franck Selsis (Laboratoire d'Astophysique de Bordeaux) and his work on the atmospheres of short-period terrestrial exoplanets. Selsis is interested in the habitability of planets around M-dwarfs, noting their strong tidal interactions with their...
Detecting Exoplanet Volcanoes
We're entering the era of the 'super-Earths,' when rocky planets larger than our own will pepper the lists of new discoveries. These smaller worlds will occasionally make a transit of their star, as does CoRoT-7b, and that's when things really get interesting. After all, we know that secondary eclipses, in which a transiting exoplanet swings behind its star as seen from Earth, can be used to study distant atmospheres. The method collects light from both star and planet and, when the planet is hidden, subtracts the starlight to get the planetary signature. Now Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics) and colleagues Wade Henning and Dimitar Sasselov are advancing the idea that we can use near-term instrumentation like the James Webb Space Telescope to spot volcanic eruptions using these same methods. Their model is based on eruptions on an Earth-like planet, extrapolating from what happens on our world to suggest that sulfur dioxide from a major volcanic event on...
New Kepler Planets in Resonance
Somewhere around 2000 light years away in the direction of the constellation Lyra is a Sun-like star orbited by at least two Saturn-class planets. What's interesting about this news, as just discussed in the Kepler press conference I've been listening to this afternoon, is that for the first time we've detected and confirmed more than one planet around a single star using the transit method. But much more important, transit timing variations -- the leads and lags of the two planets as they transit the star as seen from Kepler -- can be used to tease out new and significant information. Kepler-9b and 9c mark the first clear detection of transit timing variations by Kepler, allowing us to study the gravitational interactions between the planets involved. And that's useful stuff: We see two planets in a 2:1 orbital resonance, one with a 19.2-day orbit, the other with a 38.9-day orbit. As the inner planet completes two orbits, the outer planet completes one. The variations in transit...
HD 10180: A Planetary Harvest
In a sense the planets discovered around the Sun-like star HD 10180 are no surprise. We’ve long assumed that planetary systems with numerous planets were common. We lacked the evidence, it’s true, but that could be put down to the limitations of the commonly used radial velocity method, which favors massive worlds close to their stars. But we’re getting much better at radial velocity work and, using instruments like the HARPS spectrograph at the European Southern Observatory’s La Silla (Chile) telescope, we’re teasing out ever more exquisite signals from distant systems. More and more multiple-planet scenarios are in our future. Noting that high-precision radial velocity surveys are now able to detect planets down to roughly 1.9 Earth masses, the paper on the HD 10180 work frames the situation this way: Preliminary results from the HARPS survey are hinting at a large population of Neptune-like objects and super-Earths within ?0.5 AU of solar-type stars (Lovis et al. 2009). Moreover,...
Twin Suns May Spell Disaster
The image of double suns rising over the planet Tatooine from the first Star Wars movie never quite goes away. I remember watching the film in a theater about a week after its release, being dazzled by the visuals but thinking that a planet in an orbit around both stars of a binary would have to be well outside the habitable zone. I didn't believe in Tatooine, in other words, though now I'm a bit more circumspect. A couple of years ago Cheongho Han (Chungbuk National University, Korea) wrote a paper suggesting that microlensing might be of use in finding a planet fitting this description, if indeed such a planet exists. Then yesterday Massimo Marengo dropped me a note about new work he has been involved in that puts a damper on the idea of terrestrial worlds in such settings. Long-time Centauri Dreams readers will remember Marengo, whose fascinating work on Epsilon Eridani we've covered in these pages on several previous occasions. Now at Iowa State University, the astrophysicist has...
Thoughts on Brown Dwarfs, Disks and Planets
Planetary systems around dim brown dwarfs are a fascinating thing to contemplate, and for a vivid imagining of future human activities on such planets, I'll send you to Karl Schroeder's Permanence. The 2002 novel posits ingenious engineering to sustain bases on such worlds, and even comes up with an interstellar propulsion method powered up by their energies that sustains an expanding starfaring culture. A brief sample of Schroeder's universe (not enough to be a spoiler): ...the brown dwarfs each had their retinue of planets -- the halo worlds, as they came to be called. And though they were not lit to the human eye, many of these planets were bathed in hot infrared radiation. Many were stretched and heated by tidal effects, like Io, a moon of Jupiter and the hottest place in the Solar System. And while Jupiter's magnetic field was already strong enough to heat its moons through electrical induction, the magnetic field of a brown dwarf fifty times Jupiter's mass radiated unimaginable...
New Planets Highlight Orbital Resonance
We're learning a lot more about how planets interact with each other gravitationally. 'Resonance' is the operative term here. When planets are locked in a 2:1 orbital resonance, the outer planet orbits the host star once for every two orbits of the inner planet. A 3:2 resonance occurs when the outer planet orbits the star twice for every three orbits of the inner planet. Resonance (technically 'mean motion resonance') prevents close encounters between planets and provides long-term orbital stability. And if the 2:1 resonance is the most common pattern, it's also true that things can change when planets migrate to different parts of their system. John Johnson (Caltech) describes the result of fast inner migration: "Planets tend to get stuck in the 2:1. It's like a really big pothole. But if a planet is moving very fast it can pass over a 2:1. As it moves in closer, the next step is a 5:3, then a 3:2, and then a 4:3." Johnson's work on resonance has born fruit in a new paper in which...
Sasselov: Planets ‘Like Earth’ in Kepler Data
Dimitar Sasselov, a co-investigator on the Kepler mission, said in a TED Talk just posted that Kepler had uncovered numerous terrestrial planet candidates in its early data. Have a look at the video below (around the 8-minute mark). "Small planets dominate the picture," says Sasselov, showing a chart of planet candidates. A great deal of work has to go into confirming these results, but Sasselov goes on to say "The statistical result is loud and clear, and the statistical result is that planets like our own Earth are out there. Our Milky Way galaxy is rich in these kinds of planets." How many will be confirmed, and how many shown to be habitable? Much work ahead.
HD 209458b: A Comet-like Tail
The exoplanet HD 209458b is the subject of such intense scrutiny that the discovery of a comet-like 'tail' is almost anti-climactic. After all, this transiting 'hot Jupiter' has given us plentiful information about its atmosphere (including the presence of a massive storm), and its tight orbit around its primary, orbiting that star in 3.5 days, would imply an atmosphere in continual turmoil. Now we learn that some of the atmosphere is indeed escaping into space, with the result that stellar winds evidently push the cast-off material into a long stream behind the planet. Jeffrey Linsky (University of Colorado in Boulder) explains the observations: "Since 2003 scientists have theorized the lost mass is being pushed back into a tail, and they have even calculated what it looks like. We think we have the best observational evidence to support that theory. We have measured gas coming off the planet at specific speeds, some coming toward Earth. The most likely interpretation is that we...
WASP-3c: Implications for Finding Earthlike Planets
Learning about planets through inference is a necessary procedure, given the state of our technology. We do have a few direct images of exoplanets now, but when relying on radial velocity data or transits, we're looking at the effects planets cause upon our measurements of their stars. With CoRoT and Kepler now yielding high-quality transit data, it's encouraging to see how we can go to work on this information to learn even more about the systems they study. Thus the announcement of WASP-3c, a second planet found around a star in the constellation Lyra, whose existence was pegged by its effect on the previously known planet. WASP-3b was discovered by the Wide Angle Search for Planets project (SuperWASP), a British extrasolar planet detection program that uses robotic observatories that monitor stars for transit events. Eight wide-angle cameras monitor millions of stars, with 26 exoplanets now discovered. The new work, led by Gracjan Maciejewski (Jena University, Germany) went to...
Directly Imaged Planet Orbits Sun-like Star
Exoplanet hunting takes time, a fact that is well demonstrated in the case of a newly confirmed gas giant. Eight times as massive as Jupiter, it orbits a star much like the Sun but at a distance vast enough (300 AU) to place it well within the Kuiper Belt if it were in our own system. 1RXS 1609 b was first reported back in September of 2008 when David Lafrenière (now at the University of Montreal) and team used adaptive optics to take direct images and spectra of the object, which can be seen in the image below. Image: First released in September of 2008: Gemini adaptive optics image of 1RXS J160929.1-210524 and its ~8 Jupiter-mass companion (within red circle). This image is a composite of J-, H- and K-band near-infrared images. All images obtained with the Gemini Altair adaptive optics system and the Near-Infrared Imager (NIRI) on the Gemini North telescope. Credit: Gemini Observatory. This was thought to have been the first planet directly imaged around a Sun-like star, but...
Encouraging News re Red Dwarf Planets
Knowing of my fascination with small red stars, a friend recently asked why they seemed such problematic places for life. M-dwarfs are all over the galaxy, apparently accounting for 75 percent or more of all stars (I'm purposely leaving the brown dwarfs out of this, because we're still learning about how prolific they may be). Anyway, asked my friend, is it just that a habitable planet would have to be so close to the star that it would always present the same side to it? That's tidal lock, and it looks as if it would play havoc with any chances for a stable environment. But maybe not. In the absence of observational evidence, we have to apply models to M-dwarf planets to see what might or might not work, and some very solid modeling out of NASA Ames back in the 1990s showed that there were ways an atmosphere could circulate so as to keep the dark side of the planet from freezing out its atmosphere. This work, by Robert Haberle and Manoj Joshi, was followed by Martin Heath (Greenwich...