Kepler Ready for Florida

The Kepler mission launches March 5, a date to circle on your calendar. Kepler may become the first instrument to detect an Earth-size planet in the habitable zone of another star, using the transit method to examine 100,000 stars in its 3.5 year mission. The 0.95-meter diameter telescope is now at Ball Aerospace & Technologies (Boulder, CO), having passed the necessary environmental tests that demonstrate its space-worthiness. And word has just come that it has also passed the necessary 'pre-ship review' for transit to Florida in January. Image: An artist's rendering of what our galaxy might look like as viewed from outside. Our sun is about 25,000 light years from galactic center. The cone illustrates the neighborhood of our galaxy that the Kepler Mission will search to find habitable planets. Credit: Jon Lomberg. The image above, the work of the fine space artist Jon Lomberg, gives an idea of where Kepler will be looking. As always, Lomberg (creator of the gorgeous Galaxy Garden...

read more

Life Beyond the Snow Line

The nice thing about our conventional idea of a habitable zone is that liquid water can exist on the surface. The less helpful part of that definition is that water is more readily available much further out in a planetary system, where it usually shows up as ice. Think in terms of the 'ice line,' or the 'snow line.' Beyond it is the area around the still-forming star where temperatures are low enough to allow hydrogen compounds to condense into ice grains. Of course, we're living proof of the fact that planets in the inner system can be covered with oceans. It's therefore plausible to think in terms of delivery mechanisms, with icy comets bombarding planets in the inner system to produce oceans like those on Earth. But we're learning to extend our reach beyond conventional habitable zone notions to places much further out, an idea recently given credence by divers hands. Consider the work of Scott Gaudi (Ohio State), Eric Gaidos (University of Hawaii) and Sara Seager (MIT), familiar...

read more

Habitability Around Red Giants

The prospect of habitable planets around red giant stars fires the imagination, enough so that quite a few readers forwarded me the link to a recent paper looking at this question. I'm reluctant to speak for others, but I suppose a major reason we're so interested (and I, too, had flagged the paper as soon as it popped up on the arXiv server) is that it changes our view of habitable worlds once again. Not long ago it was only the G-class, Sun-like star that seemed a likely abode of life. Then we started looking hard at M-dwarfs. Do we now extend the search to massive red giants, the descendants of stars once like our own? Image credit: NASA, ESA and A. Feild (STScI). Werner von Bloh (Potsdam Institute for Climate Impact Research) and team show that the possibility is real. We've long known that life on a planet in Earth's orbit would not survive the swelling of the Sun, even if it did not actually engulf the planet. But life on Earth would actually die out long before that event, if...

read more

Brown Dwarf Observations and Speculations

It's tantalizing to speculate that there might be a brown dwarf system nearer to us than the Alpha Centauri stars. The odds seem long, but the discovery of a pair of brown dwarfs that are each no more than a millionth as bright as the Sun makes for exciting reading. The objects were originally cataloged by the Two Micron All Sky Survey (2MASS) as a single brown dwarf identified as 2MASS J09393548-2448279, but Adam Burgasser (Massachusetts Institute of Technology) has been able to show that the 'object' is actually a pair of the faint dwarfs. Here the Spitzer Space Telescope was the instrument of choice, showing that 2M 0939's brightness was twice what would have been expected from its temperature, which was determined to be in the range of 565 to 635 Kelvin (560 to 680 degrees Fahrenheit). The implication was that this is a brown dwarf binary, two dwarfs each with a mass some thirty to forty times that of Jupiter. And while the objects are a million times fainter than the Sun in...

read more

Carbon Dioxide Found on Distant World

Among the many things that boggle my mind is the fact that we can learn things about the atmosphere of planets that we can't even see. Take well-studied HD 189733b, a gas giant in close orbit around a K2-class star some 63 light years from us. No one has ever laid eyes on this beast, either in infrared or optical light. But that's of little moment to the Hubble telescope, among whose tools is NICMOS -- the Near Infrared Camera and Multi-Object Spectrometer. It and a lot of ingenuity get results. A transiting planet like HD 189733b moves behind its parent star every two days or so. When that happens, light from the star itself (the planet now being behind the star) can be compared to the combined light of planet and star when both are facing the Earth. Any emissions from the planet can be examined, a useful window into its atmosphere. Using such techniques, Mark Swain (Jet Propulsion Laboratory) and team have been able to detect carbon dioxide and carbon monoxide on this world, which...

read more

Students Discover Hot New Exoplanet

The Optical Gravitational Lensing Experiment has thus far rewarded researchers with twelve exoplanets, the most recent announced just today. OGLE's database is made up primarily of observations taken at the Las Campanas Observatory in Chile, its microlensing methods offering the chance to detect distant worlds that would be difficult if not impossible to study with radial velocity techniques. But because the project is all about parsing the light fluctuations of distant stars, OGLE has also found planets via the transit method, the most recent of them being the work of students at Leiden University in the Netherlands. OGLE2-TR-L9b is a discovery that points to the wealth of potential data on such worlds that may already exist in our databases. Thus the university's Ignas Snellen, who supervised the research project, found that the right software could tease a new planet out of OGLE data on some 15,700 stars, observed by the survey over a four year period between 1997 and 2000, even...

read more

Planet Imaged Around Beta Pictoris?

Images of distant exoplanets, once only a wish for future space missions, have begun to turn up with a certain regularity. The three planets around HR8799 and the single gas giant around Fomalhaut were announced on the same day, while a week later we once again have Beta Pictoris in focus, a young star so well studied that images of its dust disk go back to the mid-1980s. A new analysis of 2003 data from the Very Large Telescope now brings a team of French astronomers to offer a probable -- but not certain -- image of what may turn out to be Beta Pictoris b. The observations seem to show a gas giant some eight times more massive than Jupiter, orbiting at roughly 8 AU, not far inside Saturn's orbit in our own Solar System. But astronomer Gael Chauvin (Laboratoire d’Astrophysique de l’Observatoire de Grenoble) is quick to qualify the finding: "We cannot yet rule out definitively, however, that the candidate companion could be a foreground or background object. To eliminate this very...

read more

Reflections on Visible Exoplanets

The images of planets around Fomalhaut and HR8799 carried more clout than I expected, with traffic to the site quadrupling when the story ran, and substantial coverage from major media outlets as well. I ran the exciting images of both stars and their companions, but because I enjoy astronomical artwork, I now want to include the visualization below, showing Fomalhaut b surrounded by a large ring of autumnal russet and gold. Note, too, the extensive debris disk surrounding the distant star. Orbiting every 872 years, Fomalhaut b lies some 2.9 billion kilometers inside that disk's inner edge. Credit: ESA, NASA, and L. Calcada (ESO for STScI). Greg Laughlin (University of California, Santa Cruz) was surprised at the even-handed media treatment of HR8799, considering the brightness of Fomalhaut ('A star with a name like a rocket'), not to mention the acknowledged skills of the Hubble Space Telescope's media office. But while HR8799 isn't exactly a household word, the faint object trumps...

read more

Exoplanet Images: Two Observational Coups

Are we really moving beyond indirect detection methods to being able to produce actual images of extrasolar planets? Apparently so, as witness the first direct images of multiple planets around a normal main sequence star. And on the same day, we have the announcement of a visible light image of a Jupiter-class planet orbiting the star Fomalhaut, one suspected for several years because of the sharply defined inner edge of the dust belt around the star. A planet in an elliptical orbit affecting the debris disk had been thought to be offsetting the inner edge of the belt. Let's go to the planets found around the dusty young star HR8799 first. They range from seven to ten times the mass of Jupiter. Bruce Macintosh (Lawrence Livermore National Laboratory), one of the authors of a new paper on the achievement in Science Express, explains its significance: "Every extrasolar planet detected so far has been a wobble on a graph. These are the first pictures of an entire system. We've been...

read more

New Study: Centauri B Planets Unlikely

Roughly twenty percent of all detected exoplanets are in binary systems, intensifying our interest in Alpha Centauri. Recent work, however, has been less than encouraging to those hoping to find one or more terrestrial worlds around these stars. Indeed, Philippen Thébault (Stockholm Observatory), Francesco Marzari (University of Padova) and Hans Scholl (Observatoire de la Côte d’Azur) have shown that in the case of Centauri A, the zone beyond 0.5 AU is hostile to the accretion processes that allow planets to form. Any terrestrial-class world that close to Centauri A would be excluded from the habitable zone, a region thought to extend from 1.0 to 1.3 AU around the star. The same team now goes to work on Centauri B, having pointed out in the earlier paper that the mathematical modeling it used there was unique to Centauri A and could not be applied indiscriminately to other systems, not even to the second star of the Centauri binary. The authors are targeting the phase of planetary...

read more

Asteroid Belts, Possible Planets Around Epsilon Eridani

Two asteroid belts around Epsilon Eridani? So we learned yesterday, a fascinating find and one I want to discuss today, but only after celebrating Epsilon Eridani itself. Can any star have a more interesting pedigree? This is one of the Project Ozma stars, the other being Tau Ceti, that Frank Drake targeted in the first attempt to listen in on extraterrestrial civilizations. The Centauri stars seemed less likely then, in an era when multiple systems were thought to be hostile to planetary formation. But Epsilon Eridani and Tau Ceti were both single, Sun-like stars, surely possible homes to planets not much different from ours. Or so we thought. We've since learned that Tau Ceti's chances as a home to flourishing civilizations are diminished by the likelihood of intense cometary bombardment, while Epsilon Eridani itself is young enough (850 million years) that any parallel with our own Solar System, where life has had billions of years to attain technology, breaks down. But these...

read more

Hunting for Exoplanet Moons

We're all interested in transiting planets smaller than the Neptune-sized Gliese 436b, and sure to find many of them as our methods improve. One day soon, via missions like COROT or the upcoming Kepler, we'll be studying planets close to Earth mass and speculating on conditions there. But here's a scenario for you: Suppose the first Earth-mass detection isn't of a planet at all, but a moon orbiting a much larger planet? That challenging scenario comes from David Kipping (University College London) in a new paper on the detection of such moons. I should be calling them 'exomoons,' the satellites of planets around other stars. It's reasonable enough to assume they're out there in the billions given the nature of our own Solar System. And compared to the multitude of giant planets found thus far, an Earth-mass exomoon in the habitable zone would seem to offer a far more benign environment for life. The trick, of course, is to pull off a detection, for most exomoons are going to be...

read more

Earthlike Planets: The Visibility of Youth

Directly imaging a terrestrial planet is going to be a tough challenge. Suppose you were thirty light years from the Sun, looking back at our star in the hope of seeing the Earth. You would face the problem that the Earth and its star show an angular separation of 100 milliarcseconds, a spacing so tiny that the far brighter Sun would render its third planet (and all the others) invisible. Indeed, in optical wavelengths the Earth is ten billion times less bright than the Sun. How to go about seeing it? Observing at other wavelengths offers some help. The Sun is only a million times brighter than the Earth in the mid-infrared, which is why our first glimpse of planets like ours will probably be in this range. And it may be that our first catch is not a mature, established planet potentially offering a habitat to living organisms. Instead, it may be a clump of molten rock still glowing brightly from the heat of formation. Even after surface magma solidifies -- and new work suggests this...

read more

Hellish Weather on ‘Hot Jupiters’

If the weather on Uranus, examined here yesterday, isn't exotic enough for your taste, consider the situation on Jupiter-class worlds around other stars. A 'hot Jupiter' orbiting extremely close to its star spawns weather like nothing we've ever experienced, as modeled by computer simulations coming out of the University of Arizona. And while we can't actually image these objects yet, we can certainly deduce a great deal about them from observations made during the times they transit their star. On that score, well-studied HD 189733b is an early example of pushing the envelope. Located 63 light years from Earth, this transiting planet orbits once every 2.2 days, scooting along a mere three million miles from its primary. Spitzer Space Telescope data culling variations in starlight during the frequent planetary transits have allowed us to peg daytime temperatures on worlds like these, usually in a range somewhere between 2000 and 3000 degrees Fahrenheit (1300 and 1900 degrees Kelvin)....

read more

Habitability: Tides Tell the Tale

How tides affect habitability has become a sub-genre within exoplanetary studies, a theme pushed hard by the gifted trio of Brian Jackson, Rory Barnes and Richard Greenberg (University of Arizona). You may want to browse through earlier Centauri Dreams entries on their work, especially this fascinating take on habitability around M dwarfs, in which the authors consider the possibility that Gliese 581 c was once a relatively benign place, but is now in an orbit that renders life impossible. Orbital evolution is the broad issue, sustained complex life demanding planets with low eccentricities. And orbital evolution can take a lot of time to operate. Now I see that Brian Jackson has presented new work on tides and habitability at the 40th annual meeting of the Division of Planetary Sciences in Ithaca, NY. Here we push into interesting questions about planets already inside a habitable zone that are nonetheless too hellish to support life, and planets outside that zone that seem too cold...

read more

Finding Terrestrial Worlds in the Dust

Computer simulations are showing us how to detect the signature of Earth-like planets -- indeed, planets nearly as small as Mars -- around other stars. That interesting news comes out of NASA's Goddard Space Flight Center, where a supercomputer named Thunderbird has been put to work studying dusty disks around stars similar to the Sun. Varying the size of the dust particles along with the mass and orbital distance of the planet, the team led by Christopher Stark (University of Maryland) ran 120 different simulations. "It isn't widely appreciated that planetary systems -- including our own -- contain lots of dust," Stark says. "We're going to put that dust to work for us." Indeed. Useful and observable things happen as dust responds to the forces acting upon it. For one thing, starlight can exert a drag that causes dust particles to move closer to the parent star. More to the point, particles spiraling inward can become involved in orbital resonances with planets in the system. A...

read more

Into the Brown Dwarf Desert

At first glance, the object called COROT-exo-3b doesn't seem all that interesting. True, planets that orbit remarkably close to their stars were a surprise when first detected, but we've since found enough of them to know that a gas giant in a four-day orbit, which is about how long this object takes to circle its star, is not a great rarity. We've also learned that radial velocity methods are going to detect large, close objects more quickly than planets that orbit farther from their primary. Why is COROT-exo-3b making news? Then you look a little more closely at the new find. For one thing, the COROT mission depends not upon radial velocity measurements but planetary transits. More significantly, COROT-exo-3b is roughly the size of Jupiter but is fully twenty times as massive. Orbiting an F-class dwarf with metallicity values much like the Sun, the object opens up a new perspective, for we've found planets twelve times as massive as Jupiter and stars seventy times as massive, but...

read more

Colliding Worlds: The Ultimate Extinction Event

When Worlds Collide, the 1932 novel of planetary catastrophe, presented the most extreme extinction event imaginable. A pair of wandering planets enters the Solar System, one on collision course with the Earth, the other destined to be captured into orbit around the Sun. The doughty crew of an escaping rocket, on their way to a new life on the captured world, can only watch in horror as the Earth is destroyed. Now we learn about a 'when worlds collide' scenario that seems to have involved two mature, Earth-sized planets in a distant Solar System. The system in question is BD+20 307, originally thought to be a single star with a massive, warm dust disk, but now known to be a close binary orbiting the common center of mass every 3.42 days. Both stars are similar to the Sun in mass, temperature and size. Moreover, the system seems to have an age comparable to our own Sun, and the sheer amount of dust at roughly Venus to Earth distance is quite interesting. We would expect the dust...

read more

Direct Imaging and Its Exoplanetary Uses

As I taper back on my post-surgical medications (see yesterday's post), a coherent universe is gradually coalescing around me once again. Still, I think I'll take today relatively easy, looking at just one of the two stories I've been pondering during my brief convalescence. The first is intriguing not so much because of what it appears to be -- a planet around another star, as imaged by the Gemini North Telescope on Mauna Kea -- but rather because of where that planet seems to have formed. Have a look. The image at right shows the torturously named 1RXS J160929.1-210524, a star some 500 light years from Earth, along with the apparent companion of that star. The team behind this work has been surveying a group of stars in the so-called Upper Scorpius association, a group of relatively young stars that formed some five million years ago. Gemini is equipped with adaptive optics capabilities that make finding different types of companions around such stars feasible. This one seems to be...

read more

Evidence for Planets in Protoplanetary Disks

Using a near-infrared spectrograph attached to ESO's Very Large Telescope, astronomers have been able to examine the inner protoplanetary disks around three interesting stars, with results showing the sheer diversity of the apparently emerging systems. Only a few million years old, all three stars could be considered analogs of our own Sun, going through processes like those that produced the Solar System some 4.6 billion years ago. The disks under study show regions where the dust has been cleared out, the possible signature of planetary influence. The new work, which offers higher resolution than was earlier available, demonstrates that the previously known gaps in the dust still contain molecular gas, an indication that the dust has begun to form planetary embryos or that a planet has already formed and is clearing the disk gas as it orbits. The likely planets include a massive gas giant orbiting the star SR 21 at a distance of something less than 3.5 AU, and a possible planet...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives