Suppose a civilization somewhere in the cosmos is approaching Kardashev type III status. In other words, it is already capable of using all the power resources of its star (4*1026 W for a star like the Sun) and is on the way to exploiting the power of its galaxy (4*1037 W). Imagine it expanding out of its galactic niche, turning stars in its stellar neighborhood into a series of Dyson spheres. If we were to observe such activity in a distant galaxy, we would presumably detect a growing void in visible light from the area of the galaxy where this activity was happening, and an upturn in the infrared. Call it a 'Fermi bubble.' That's the term used by Richard Carrigan (Fermi National Accelerator Laboratory) in his latest work on what he calls 'interstellar archaeology,' the search for cosmic-scale artifacts like Dyson spheres or Kardashev civilizations. A Fermi bubble would grow as the civilization creating it diffused through space. Carrigan notes that, as Carl Sagan and others...
SETI at the Royal Society
As I'm just finishing up Richard Holmes' The Age of Wonder (Pantheon, 2009), the Royal Society had been on my mind even before the two-day conference on SETI that concluded yesterday made the news. If you haven't read the Holmes book, by all means do so. It's a fascinating study of the development of science and the imagination in the late 18th Century and into the Romantic era, with cameos by the likes of Shelley and Keats and in-depth discussions of everyone from Pacific voyager Joseph Banks to the chemist Humphry Davy. It's a cliché to say I couldn't put the book down, but this one fully deserves the compliment. With the Royal Society now in its 350th year, a conference steeped in SETI and questions of astrobiology seems made to order as we track the data from our far-flung space observatories. I wanted to mention that Paul Davies' public lecture at the conference, called "The Eerie Silence: Are We Alone in the Universe," will be made available at the Royal Society video...
Massive Stars: Poor Prospects for SETI
We've long speculated about astrobiology on planets around stars like the Sun, and lately the thinking has moved to M-class dwarfs and whether or not they could be circled by habitable planets. But what about massive stars, classes A and B, where we're looking at two to fifteen times the mass of the Sun? New work from the Harvard-Smithsonian Center for Astrophysics (CfA) and the National Optical Astronomy Observatory (NOAO) tells us that planets form readily around such stars, leading Xavier Koenig (CfA) to tell a press conference at the AAS meeting this week in Washington, "We see evidence of planet formation on fast forward." Make no mistake, massive stars present a challenging environment for planet formation. Their disks may be packed with useful material for building worlds, but the intense stellar radiation and winds from these stars work to destroy the disks in relatively short order. Koenig and colleagues looked at the star-forming region W5, some 6500 light years away in the...
“RuBisCo Stars”: Part II
by Joe Davis Yesterday we followed Joe Davis' adventures in Puerto Rico as he arranged for the transmission of a message to the stars near the 35th anniversary of the famous message to M13, sent from the same site in 1974. Today Davis concludes the story, with a look at how the 'RuBisCo' message was put together, and thoughts on the ins and outs of getting unusual projects approved in today's scientific climate. I had a sort of showdown with Arecibo's interim Director, Dr. Michael C. Nolan at the last minute and Danielle Hofmans' detailed notes have made it possible for me to recount that conversation here. Nolan's main problem was about politics. Arecibo once received a "Golden Fleece" award from Senator Proxmire for its involvement with the search for extraterrestrial intelligence, including its role in the Sagan-Drake transmission of 1974. That recollection has special resonance now since there are very serious ongoing concerns about future funding for the observatory. Nolan...
“RuBisCo Stars” and the Riddle of Life
by Joe Davis We've looked before at the work of MIT biology research affiliate Joe Davis, whose passion is the melding of science and art. Among his many ideas are the creation of an 'infogene,' engineering a sign of human intelligence into the genome of bacteria that could be flung into the heavens by the trillion, and a three-masted Gulf Coast tower that would discharge laser beams into the sky. In 1986, Davis used MIT's Millstone radar to beam a signal to Epsilon Eridani, Tau Ceti and two other stars. His most recent adventure takes him to the great telescope at Arecibo. It involves the 35th anniversary of the Drake/Sagan transmission to M13, a messaging strategy based on molecular biology, and the emergence of the coolest iPhone in the world. What follows is a narrative describing events that took place just over one week ago: I traveled from Boston to Puerto Rico on 03 November to deliver a lecture for the University of Puerto Rico's Biology Colloquium (Rio Piedras campus) in...
Planetary Habitability Quantified
Habitability is always a matter of definition. Is it a measure of suitability for human life? Or do we take the larger astrobiological view that it's based on suitability for microbial life, in which case we go from a narrowly defined habitable zone here in our Solar System to one that could potentially stretch from the upper atmosphere of Venus to the suspected subsurface aquifers on some Kuiper Belt objects. But these qualitative definitions have thus far lacked a quantitative counterpart, a method to quantify and compare potentially living worlds. The matter has drawn the attention of Abel Mendez (University of Puerto Rico, Arecibo), who discussed his quantitative evaluation of planetary habitability at the Division for Planetary Sciences meeting this week in Fajardo, Puerto Rico. One of his results stands out immediately. Using finely tuned planetary models, Mendez found that among Mars, Venus, Europa, Titan and Enceladus, the latter has the highest subsurface habitability. That...
Regarding METI and SETI Motives
by James Benford I first talked to Jim Benford back in 2003, discussing his work (wih brother Gregory) on microwave beam propulsion. He had already run experiments at the Jet Propulsion Laboratory demonstrating acceleration on a lightsail using these techniques, and was then hoping to run an experiment on The Planetary Society's ill-fated Cosmos 1. The founder of Microwave Sciences, Benford's earlier work at Physics International led to the development of the largest high power microwave experimental facility in the country. Along with continuing work on sail beamed propulsion concepts, the physicist has been actively studying questions of SETI and METI, musing on the kind of beacons we might find and the motivations for building them. Herewith some thoughts inspired by recent discussions in these pages. We explored the motives for a civilization broadcasting to the galaxy at large (which I call Beacons, as they're not targeted at specific stars) in one of the two papers we did last...
Interstellar Beacons: A Silence in Heaven?
by Jon Lomberg It seems fitting that we should be in the midst of a three-part series on SETI and METI issues. As Larry Klaes reminded me in a recent comment, September 19th was the fiftieth anniversary of the paper that began the modern SETI era, Morrison and Cocconi's "Searching for Interstellar Communications" (available here). Artist, lecturer and polymath Jon Lomberg now adds his own take on the discussion. Pay particular attention to the question of signal duration -- would a METI signal be continuous or intermittent? Much rides on the answer. Lomberg is a familiar figure to Centauri Dreams readers. Creator of the Galaxy Garden (Kona, Hawaii), Jon is an astronomical artist working in many media whose work is known throughout the space community and beyond. Viewers of COSMOS will know that he was chief artist on that project, serving as Carl Sagan's principal artistic collaborator for many years. His splendid work on CONTACT, where he storyboarded many of the film's astronomical...
The Why of METI and SETI
?by Larry Klaes About a decade ago while attending a SETI conference, I was listening to a researcher give a talk about detecting messages from other galaxies such as the giant elliptical galaxy Messier 87 and the immense Virgo galactic cluster it resides in. Since M87 is about 60 million light years from the Milky Way, I later asked him why would someone send a message that they could not hope to get a reply to for 120 million years at the least. His reply was rather vague and dissatisfying to me. It was along the lines of they would do it for the sake of being able to sending such a message across such a vast distance and time. I was left with the impression he did not fully think out why any intelligence would send messages across millions of light years of intergalactic space with even less hope of a reply than our token METI (Messaging ExtraTerrestrial Intelligence) effort with Messier 13 in 1974 via Arecibo, for which we will need to wait 50,000 years for the quickest reply...
Amino Acid Detected in Comet Debris
Chalk up another win for the 'life is ubiquitous' school of thought. We now know that when the Stardust spacecraft passed through the gas and dust surrounding comet Wild 2 back in 2004, it captured samples that include glycine. Living things use glycine to make proteins, which made the preliminary detection of this amino acid a significant event, though one that had to be carefully analyzed. After all, terrestrial contamination could have accounted for the glycine gathered up by Stardust. Image: The comet Wild 2 as imaged by the Stardust spacecraft. Credit: NASA/JPL. Ensuing work, however, has ruled out the contamination scenario. The space-gathered samples show significantly more Carbon 13 than glycine from Earth, an isotopic marker that identifies the material as originating in the comet. That gets us back to a welcome thought, that life is common in the universe. Carl Pilcher (NASA Astrobiology Institute) has this to say: "The discovery of glycine in a comet supports the idea that...
In Praise of K-class Stars
When it comes to exoplanet speculations, we're still in the era when data are few and dominated by selection effect, which is why we began by finding so many 'hot Jupiters' -- such planets seem made to order for relatively short-term radial velocity detections. It's a golden age for speculation, with the promise of new instrumentation and a boatload of information from missions like Kepler and CoRoT to be delivered within a few years. What an extraordinary time to be doing exoplanetary science. The big questions can't be answered yet, but it shouldn't be long before we have an inkling about what kind of stars are most likely to produce terrestrial planets. And maybe a qualification is in order. M-dwarfs are so common in our galaxy -- some estimates run to seventy percent of all stars and up -- that finding habitable worlds around them would hugely increase the possible venues for life. But is there any way we could call planets around M-dwarfs 'Earth-like?' Maybe in terms of...
Titan: A ‘Fishing License’ to Broaden the Hunt for Life
An exotic planetary environment right here in the Solar System may be a useful test for answering the key question of how common life is in the universe. So argues Jonathan Lunine (University of Arizona) in an upcoming paper. Lunine believes there is a plausible case for life to form on Titan, and that if we were to find it there, its very dissimilarity from Earth would make it a test-case for life in other extreme environments of the sort that may be common in the cosmos. We'd like to answer this question locally because it may be some time before we can answer it around other stars. After all, the best spectral signatures we can hope to get from the atmospheres of Earth-analogues elsewhere are quite possibly going to be ambiguous. Molecular oxygen can be a sign of photosynthesis but also of the abiotic escape of water from the upper atmosphere. Methane in the same atmosphere makes biology more likely but may be, Lunine thinks, difficult to detect from Earth. Image: One way to...
Galactic Life in Context
Does complex life emerge at a gradual, uniform rate? If so, we can come up with one answer to the Fermi paradox: We have not detected signs of extraterrestrial life because the time needed for complex life to appear generally exceeds the life of a star on the main sequence. But the assumption that intelligence appears over time with a gradual inevitability -- a key tenet of work by Brandon Carter, Frank Tipler and others in the 1980s, may not in fact be true. Solar system-wide events connect life with its stellar environment, while galaxy-wide events provide yet another context. Punctuated Evolution Among the Stars Milan ?irkovi? (Astronomical Observatory, Belgrade) and colleagues have much to say about this in a new paper in Astrobiology. It's a rich treatment of our older assumptions and newer thinking about punctuated evolution, the idea that life actually evolves in spasms rather than smooth ascents. Species remain relatively stable for long periods but endure sudden changes that...
Finding Life in the Ice
As we contemplate using long-range tools like spectroscopy to examine distant exoplanets for life, we're also developing the hands-on equipment we'll need for seeking it out in our own Solar System. Project SLIce (Signatures of Life in Ice) is a case in point, an attempt to study how organic material behaves in ice on other worlds by using Earth settings as an analogy. On that score, the archipelago of Svalbard has proven to be a helpful testbed. Located in the Arctic Ocean between Norway and the North Pole, Svalbard is icy and spectacular. The image below conjures up memories of a nautical journey I took around Iceland in the 1970s, with white-capped seas pushing up against snow-clad peaks. The SLIce team sees Svalbard as a laboratory for looking for extant or extinct life, and a place to develop the protocols for working with rovers in operating environments like Mars. Image: I love Iceland, but pushing as far north as Svalbard would really bring out the adventurer in me. Here we...
SETI: A Detectable Neutrino Signal?
Somehow I never thought of the IceCube neutrino telescope as a SETI instrument. Deployed in a series of 1,450 to 2,450 meters-deep holes in Antarctica and taking up over a cubic kilometer of ice, IceCube is fine-tuned to detect neutrinos. That makes it a useful tool for studying violent events like galactic collisions and the formation of quasars, providing insights into the early universe. But SETI? Perhaps, says Zurab Silagadze (Novosibirsk State University), who notes that most SETI work in the past has focused on centimeter wavelength electromagnetic signals. Says Silagadze: Here we question this old wisdom and argue that the muon collider, certainly in reach of modern day technology... provides a far more unique marker of civilizations like our own [type I in Kardashev's classification... Muon colliders are accompanied by a very intense and collimated high-energy neutrino beam which can be readily detected even at astronomical distances. Image: The IceCube array in the deep ice,...
A Longer Life for Earth’s Biosphere?
If we can find a way to double the lifespan of Earth's biosphere, we'll have changed the odds for finding extraterrestrial civilizations. After all, the amount of time an advanced culture can exist is one of the variables in the famous Drake equation, which estimates how many intelligent civilizations there are in the Milky Way. Lengthen potential habitability and you give any civilization that much more chance to spread into the cosmos. Thus recent work out of Caltech intrigues us in several directions. Joseph Kirschvink and colleagues look at effects that could add a billion years on to our planet's projected habitability. Consider: Earth took some four billion years to develop intelligent life, leaving us about a billion before our planet becomes uninhabitable. That result would be caused by a brighter and hotter Sun, the loss of carbon dioxide in the atmosphere through the weathering of rocks, and the eventual evaporation of water from the oceans, leaving nothing alive. Reducing...
Earthlight’s Bio-signature Measured
Among the most interesting of the future missions now being weighed by NASA, TESS (the Transiting Exoplanet Survey Satellite) would help scientists using the James Webb Space Telescope know where to look for Earth-like planets around nearby stars. While the invaluable Kepler mission scans 100,000 distant stars, hoping to gain statistics on Earth-sized exoplanets, TESS would have a different aim, looking for transiting terrestrial worlds around only the brightest stars. A 2012 launch is possible if the mission is approved. Here's Greg Laughlin (UC-Santa Cruz) on TESS' possibilities: TESS... provides the cheapest, shortest, and most direct path to the actual characterization of a potentially habitable planet. Included in the 2.5 million brightest stars are a substantial number of M dwarfs. Detailed Monte-Carlo simulations indicate that there's a 98% probability that TESS will locate a potentially habitable transiting terrestrial planet orbiting a red dwarf lying closer than 50 parsecs....
SETA: Finding a ‘Graveyard Civilization’
Imagine an extraterrestrial civilization that manages to colonize the entire galaxy. Then imagine the colonizing civilization collapsing so definitively that no trace of its existence has yet been detected, at least from our planet. We can call it, as Jacob Haqq-Misra and Seth Baum (Pennsylvania State University) do in a recently released paper, a 'graveyard civilization,' one whose remains might still be accessible provided we know where and how to look. Pushing the Limits of Growth What could bring down such a civilization? The idea here is that we can explain the Fermi paradox ('Where are they?') by assuming that exponential growth is not a sustainable development pattern for intelligent civilizations. The authors draw on human experience in analyzing this possibility. Here's the gist of it: The consequences of unsustainable development are often dire. In many documented cases, resource depletion caused by human activities has led to the permanent collapse of human populations,...
Meteorites a Key to Habitability?
You wouldn't think life on a planet being bombarded by debris in the early days of its solar system would have much chance for survival. Indeed, the prospect of being pummeled for millions of years in the Late Heavy Bombardment has led to scenarios in which life started, was extinguished, and re-started on this planet, the idea being that the massive cratering we see on objects like the moon was also being enacted here. But maybe we can make a virtue of necessity and consider what all those incoming objects might have done long-term to improve the atmospheres of the planets they landed on. So goes the thinking in a new study that examines the composition of ancient meteorites to see what they would do when heated to temperatures like those caused by a fiery descent to Earth. Using a method called pyrolysis-FTIR, in which the meteorite fragments were quickly heated (at a remarkable 20,000 degrees Celsius per second), the team measured the carbon dioxide and water vapor released. It...
Building the Interstellar Message
I'm glad to see the phrasing of the key question used in the SETI Institute's 'Earth Speaks' project. Assuming we one day detect a signal from an extraterrestrial civilization, the Institute asks, 'Should we reply, and if so, what should we say?' Given the apparent ease with which broadcasts to the stars have been made in the last few years, advertising everything from snack foods to movies, this question might easily have been 'What should we say when we respond to an extraterrestrial signal?' When or if? I come down on the side of the 'if' formulation, because the question deserves a global response, one reflecting a broad range of disciplines and perspectives. Such a response takes time to build. Another thing I like about 'Earth Speaks' is that it will give us an interesting take on our own species. The plan here is to encourage people to submit messages, pictures and sounds online, using the Internet to solicit ideas. Fine-Tuning an Interstellar Greeting The site is here, where...

