Toward a Beamed Core Drive

May 22, 2012

If you didn’t see this morning’s spectacular launch of the SpaceX Falcon 9, be sure to check out the video (and it would be a good day to follow @elonmusk on Twitter, too). As we open the era of private launches to resupply the International Space Station, it’s humbling to contrast how exhilarating this morning […]

Read the full article →

Antimatter: The Production Problem

May 21, 2012

Antimatter is so tantalizing a prospect for propulsion that every time a new slant on using it appears, I try to figure out its implications for long-haul missions. But the news, however interesting, is inevitably balanced by the reality of production problems. There’s no question that antimatter is potent stuff, with the potential for dealing […]

Read the full article →

Antimatter: Finding the Fuel

May 17, 2012

In Stephen Baxter’s wonderful novel Ark (Roc, 2010), a team of scientists works desperately to come up with an interstellar spacecraft while epic floods threaten the Earth. The backdrop gives Baxter the chance to work through many of our current ideas about propulsion, from starships riding a wave of nuclear explosions (Orion) to antimatter possibilities […]

Read the full article →

Re-Thinking The Antimatter Rocket

April 2, 2012

Once when reading Boswell’s monumental life of the 18th Century writer and conversationalist Samuel Johnson, I commented to a friend how surprised I had been to discover that Johnson didn’t spend much time reading in his later years. “He didn’t need a lot of time,” replied my friend, a classics professor. “He tore the heart […]

Read the full article →

Thoughts on Antihydrogen and Propulsion

March 14, 2012

Normally when we talk about interstellar sail concepts, we’re looking at some kind of microwave or laser beaming technologies of the kind Robert Forward wrote about, in which the sail is driven by a beam produced by an installation in the Solar System. Greg and Jim Benford have carried out sail experiments in the laboratory […]

Read the full article →

Antimatter Source Near the Earth

August 10, 2011

Now that NASA’s Institute for Advanced Concepts (NIAC) is back in business, I’m reminded that it was through NIAC studies that both Gerald Jackson and James Bickford introduced the possibility of harvesting antimatter rather than producing it in huge particle accelerators. The idea resonates at a time when the worldwide output of antimatter is measured […]

Read the full article →

Antimatter: The Conundrum of Storage

March 11, 2011

Are we ever going to use antimatter to drive a starship? The question is tantalizing because while chemical reactions liberate about one part in a billion of the energy trapped inside matter — and even nuclear reactions spring only about one percent of that energy free — antimatter promises to release what Frank Close calls […]

Read the full article →

Relativistic Rockets, Antimatter and More

February 22, 2010

Interstellar theorist Richard Obousy (Baylor University) has some thoughts about William and Arthur Edelstein’s ideas on flight near the speed of light. As discussed in these pages on Friday, the Edelsteins, in a presentation delivered at the American Physical Society, had argued that a relativistic rocket would encounter interstellar hydrogen in such compressed form that […]

Read the full article →

Antimatter Propulsion: A Critical Look

June 3, 2009

Antimatter’s allure for deep space propulsion is obvious. If matter is congealed energy, we need to find the best way to extract that energy, and our existing rockets are grossly inefficient. Even the best chemical rocket pulls only a billionth of the energy available in the atoms of its fuel, while a fission reaction, powerful […]

Read the full article →

Billions of Positrons Created in Laboratory

November 18, 2008

Irradiate a millimeter-thick gold target with the right kind of laser and you might get a surprise in the form of 100 billion positrons, the antimatter equivalent of electrons. Researchers had been studying the process at Lawrence Livermore National Laboratory, where they used thin targets that produced far fewer positrons. The new laser method came […]

Read the full article →