The SETI Institute's just announced Laser SETI funding campaign intends to put into practice what SETI researchers have been anticipating for decades, an all-sky, all-the-time observing campaign. The Institute's Eliot Gillum and Gerry Harp are behind the project, backed by an impressive list of advisors, with the intention of using optical SETI methods to look for signs of extraterrestrial civilizations. In doing so, they're reminding us how we've done SETI, how we can surmount its current limitations, and what a SETI of the future will look like. Think about how SETI has evolved since the days when Frank Drake created Project Ozma at the National Radio Astronomy Observatory at Green Bank (WV). Fresh with the insights of Giuseppe Cocconi and Philip Morrison, who examined radio methods and suggested a search for signals near the 21 centimeter wavelength of neutral hydrogen, Drake turned a 26-meter radio telescope to examine the nearby Sun-like stars Tau Ceti and Epsilon Eridani. Would...
‘Cosmic Modesty’ in a Fecund Universe
I came across the work of Chin-Fei Lee (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan) when I had just read Avi Loeb's essay Cosmic Modesty. Loeb (Harvard University) is a well known astronomer, director of the Institute for Theory and Computation at the Harvard-Smithsonian Center for Astrophysics and a key player in Breakthrough Starshot. His 'cosmic modesty' implies we should accept the idea that humans are not intrinsically special. Indeed, given that the only planet we know that hosts life has both intelligent and primitive lifeforms on it, we should search widely, and not just around stars like our Sun. More on that in a moment, because I want to intertwine Loeb's thoughts with recent work by Chin-Fei Lee, whose team has used the Atacama Large Millimeter/submillimeter Array (ALMA) to detect organic molecules in an accretion disk around a young protostar. The star in question is Herbig-Haro (HH) 212, an infant system (about 40,000 years old) in Orion about 1300...
Focus on Interstellar Prebiotic Chemistry
400 light years away in a star-forming region called Rho Ophiuchi there is an interesting stellar system in the making. Catalogued as IRAS 16293-2422, what we have here is a triple protostar system -- a binary separated by 47 AU and a third star at 750 AU. All three have masses similar to the Sun, and while the system is young, it has already achieved a certain fame in that researchers working with data from the Atacama Large Millimeter Array have been able to identify a simple form of sugar called glycolaldehyde in surrounding gas. Learning that building blocks of life can form in other systems is useful, but here we have sugar in the region where a protoplanetary disk can form, an indication that such materials are widely available in the places where planets begin to coalesce around their host star. Then just this month we've learned that further ALMA work has yielded the prebiotic organic molecule methyl isocyanate (CH3NCO) in the same system. Niels Ligterink (Leiden Observatory)...
New Dip for Boyajian’s Star
Twitter action has been fast and furious with this morning's news of the first clear dip in light from Boyajian's Star (KIC 8462852) since the Kepler data. #TabbysStar IS DIPPING! OBSERVE!! @NASAKepler @LCO_Global @keckobservatory @AAVSO @nexssinfo @NASA @NASAHubble @Astro_Wright @BerkeleySETI— Tabetha Boyajian (@tsboyajian) May 19, 2017 I'm on the road most of today and so couldn't get off a full post, but I did want to pass along Tabetha Boyajian's newsletter, short but sweet. Hello all, We have detected a dip in progress! Not much time to share details - we are working hard coordinating followup observations. Here is a snapshot of LCO data for the Month of May. Stay tuned! ~Tabby et al. And here is Jason Wright's video chat on this event during his visit to UC Berkeley. https://www.youtube.com/watch?v=eYpIGZS8nJc&w=500&h=416
A ‘Census’ for Civilizations
We’ve been talking about the Colossus project, and the possibility that this huge (though remarkably lightweight) instrument could detect the waste heat of extraterrestrial civilizations. But what are the chances of this, if we work out the numbers based on the calculations the Colossus team is working with? After all, Frank Drake put together his famous equation as a way of making back-of-the-envelope estimates of SETI’s chances for success, working the numbers even though most of them at that time had to be no more than guesses. Bear in mind as we talk about this that we’d like to arrive at a figure for the survival of a civilization, a useful calculation because we have no idea whether technology-driven cultures survive or destroy themselves. Civilizations may live forever, or they may die out relatively quickly, perhaps on a scale of thousands of years. Here Colossus can give us useful information. The intention, as discussed in a paper by Jeff Kuhn and Svetlana Berdyugina that...
Colossus and SETI: Searching for Heat Signatures
Yesterday we looked at the PLANETS telescope, now under construction on the Haleakala volcano on the island of Maui. What will become the world's largest off-axis telescope is considered a pathfinder, part of the progression of instruments that will take us through the array of sixteen 5-meter mirrors that will be called ExoLife Finder, itself to be followed by Colossus, an instrument comprised of 58 independent off-axis telescopes. Colossus will use ultra-thin mirror technologies and interferometric methods to achieve an effective resolution of 74 meters. And it will be optimized for detecting extrasolar life and extraterrestrial civilizations. Image: Artist's rendering of the Colossus telescope. Credit: Colossus/Dynamic Structures Ltd. How to build something on such a scale? The design work is being handled by a consortium led by Jeff Kuhn (University of Hawaii), Svetlana V. Berdyugina (University of Hawaii/Kiepenheuer Institut für Sonnenphysik), David Halliday (Dynamic Structures)...
Breakthrough Listen Data Becoming Available
Andrew Siemion (Berkeley SETI Research Center) presented results from the first year of the Breakthrough Listen initiative last Thursday at the Breakthrough Discuss meetings in Palo Alto. The data can be acquired here, with the caveat that file sizes can be gigantic and the data formats demand specialized software. Background information and details are available on this BSRC page. Working with the Parkes instrument in New South Wales as well as the Green Bank telescope in West Virginia and Lick Observatory's Automated Planet Finder on Mt. Hamilton in California, the project is rapidly amassing petabytes of data. Image: The largest single-dish fully steerable radio telescope began operation in 2000 August in Green Bank, West Virginia, USA. Dedicated as the Robert C. Byrd Green Bank Telescope, the device weighs over 30 times more than the Statue of Liberty, and yet can point anywhere in the sky more precisely than one thousandth of a degree. The main dish is so large that it could...
The Challenges of Przybylski’s Star
About 370 light years away in the constellation Centaurus is a variable star whose spectrum continues to raise eyebrows. The star is laced with oddball elements like europium, gadolinium, terbium and holmium. Moreover, while iron and nickel appear in unusually low abundances, we get short-lived ultra-heavy elements, actinides like actinium, plutonium, americium and einsteinium. Hence the mystery: How can such short-lived elements persist in the atmosphere of a star? Discovered in 1961 by the Polish-American astronomer Antoni Przybylski, these traits have firmly placed Przybylski's Star in the Ap class of chemically peculiar stars. Its very name is a cause of continuing conversation. PRZYBYLSKI'S STAR (HD 101065) Blue dwarf with a peculiar spectrum showing an almost complete absence of vowels.— FSVO (@FSVO) November 22, 2012 Well, true enough. If Przybylski's Star is a challenge to understand, it's also a challenge to pronounce. Charles Cowley (University of Michigan), who...
Fast Radio Bursts: Signature of Distant Technology?
We have a lot to learn about Fast Radio Bursts (FRBs), a reminder that the first of these, the so-called Lorimer Burst (FRB 010724) was detected only a decade ago. Since then we've found 16 others, all thought to be at cosmological distances. The 2015 detection of FRB 150418, at first thought to have left an afterglow, has now been traced to an active galactic nucleus powered by a supermassive black hole. FRB 121102 appears to be a rare case of a repeating FRB (about which more a bit later). The distances involved and the brightness of the FRBs have led to source hypotheses ranging from gamma ray bursts to massive neutron stars. But as Avi Loeb (Harvard University) speculates in a new paper slated to appear in Astrophysical Journal Letters, we could conceivably be dealing with an engineering phenomenon rather than a natural one. What Loeb and Manasvi Lingam, a Harvard postdoctoral fellow at Harvard's School of Engineering, discuss is whether FRBs could be interpreted as artificial...
Agricultural Resources Beyond the Earth
Gaining a human foothold on another world -- Mars is the obvious first case, but we can assume there will be others -- will require a search for resources to support the young colony. In today's essay, Ioannis Kokkinidis looks at our needs in terms of agriculture, whether on a planetary surface or a space-borne vessel like an O'Neill colony or a worldship. Happily, his first reference, to Lucian of Samosata, has deep science fiction roots. The author of several Centauri Dreams posts including Agriculture on Other Worlds, Ioannis graduated with a Master of Science in Agricultural Engineering from the Department of Natural Resources Management and Agricultural Engineering of the Agricultural University of Athens. He holds a Mastère Spécialisé Systèmes d'informations localisées pour l'aménagement des territoires (SILAT) from AgroParisTech and AgroMontpellier and a PhD in Geospatial and Environmental Analysis from Virginia Tech. He now lives in Fresno CA and...
Virtual Von Neumann Probes using Self Amplification and Replication of Electromagnetic Signals through Natural Stellar Processes
Is it possible to use natural phenomena to boost signals to the stars? In the essay below, Bill St. Arnaud takes a look at the possibilities, noting that civilizations that chose to broadcast information might select a method that mimics by electromagnetic means what the classic von Neumann probe would achieve with physical probes. St. Arnaud is an optical communications engineer, a network and green IT consultant who works with clients on a variety of subjects such as next generation research/education and Internet networks. His interest in practical solutions -- free broadband and dynamic charging of electric vehicles -- to reduce greenhouse gas emissions is matched by a fascination with interstellar matters, particularly SETI. By Bill St. Arnaud In their recent post on Centauri Dreams Roger Guay and Scott Guerin (https://centauri-dreams.org/?p=36802) make a compelling argument that fading electromagnetic halos may be all that's left for us to discover of an extraterrestrial...
A New Context for Complex Life
We normally think of the appearance of oxygen on Earth in terms of a 'great oxygenation event,' sometimes referred to as the 'oxygen catastrophe' or 'great oxidation.' Here oxygen begins to emerge in the atmosphere about 2.3 billion years ago as oceanic cyanobacteria produce oxygen by photosynthesis. The actual oxygenation event would be the point when oxygen is not all chemically captured but becomes free to escape into the atmosphere. It's a straightforward picture -- we move from a lack of oxygen to gradual production through photosynthesis and then a concentration strong enough to destroy many anaerobic organisms, an early and huge extinction event as life on our planet adjusted to the new balance. But a team of researchers led by Michael Kipp (University of Washington) has produced a paper showing a much more complicated emergence of oxygen, one that produced a surge in oxygenation that lasted a quarter of a billion years before easing. Kipp and team studied oxygen in the...
Inconstant Moons: A New Lunar Origin Scenario
A recent snowfall followed by warming temperatures produced a foggy night recently, one in which I was out for my usual walk and noticed a beautiful Moon trying to break through the fog layers. The scene was silvery, almost surreal, the kind of thing my wife would write a poem about. For my part, I was thinking about the effect of the Moon on life, and the theory that a large single moon might have an effect on our planet’s habitability. Perhaps its presence helps to keep Earth’s obliquity within tolerable grounds, allowing for a more stable climate. But that assumes we’ve had a single moon all along, or at least since the ‘big whack’ the Earth sustained from a Mars-sized protoplanet that may have caused the Moon’s formation. Is it possible the Earth has had more than one moon in its past? It’s an intriguing question, as witness a new paper in Nature Geoscience from researchers at the Technion-Israel Institute of Technology and the Weizmann Institute of Science. The paper suggests...
Citizen SETI
I love watching people who have a passion for science constructing projects in ways that benefit the community. I once dabbled in radio astronomy through the Society of Amateur Radio Astronomers, and I could also point to the SETI League, with 1500 members on all seven continents engaged in one way or another with local SETI projects. And these days most everyone has heard the story of Planet Hunters, the citizen science project that identified the unusual Boyajian's Star (KIC 8462852). When I heard from Roger Guay and Scott Guerin, who have been making their own theoretical contributions to SETI, I knew I wanted to tell their story here. The post that follows lays out an alien civilization detection simulation and a tool for visualizing how technological cultures might interact, with an entertaining coda about an unusual construct called a 'Dyson shutter.' I'm going to let Roger and Scott introduce themselves as they explain how their ideas developed. by Roger Guay and Scott Guerin...
Freelancing an Interstellar Message
The problem in sending intentional signals to the stars isn't technology. It's our lack of consensus. Having widespread buy-in on whether, why and how to add an 'active' component to SETI is deeply polarizing, at least on the surface. But dig deeper: While there are those who think we should send signals about ourselves to other stars, the opposition doesn't necessarily disagree provided appropriate discussion and consultation be achieved first. I'm with the latter camp and always have been. To me, this is as sensible as coming up with an environmental impact statement and debating it. We need to be thinking about the issues involved here because as technologies get more powerful, individual actors will be able to send messages that would formerly have been in the province of governments. As I mentioned last week, such issues are not new to science, as witness the debate over recombinant DNA research that eventually led to multidisciplinary agreement -- for more on this, see Asilomar...
Looking for ‘Technosignatures’
We speculated yesterday that categorizing civilizations on the basis of their power use may not be a given, though it is the basis of the familiar Kardashev types. It seems natural to a rapidly changing technological society like ours that the trend is always upward, a clear path toward harnessing the energies of the home planet, then the Sun, then the galaxy. That this may not be the case seems to go against the grain of ‘Dysonian SETI,’ which looks for, among other things, artifacts as large as Dyson spheres and other astro-engineering projects on massive scales. Or maybe not, for some engineering involving adjustments to planetary environments may well produce observables. We just have to be aware of the range of possibilities here, and recognize our own limitations in trying to figure them out. For we’ve learned something else from technology, and that is that its components grow ever smaller. Working at nanotech scales to create things from the ground up isn’t beyond the...
SETI in the Anthropocene
Have we, as some have argued, entered a new 'age of humanity,' the so-called Anthropocene? The notion is controversial in many quarters, but it addresses the growing concern about our human influence on the Earth and the nature of planetary change. David Grinspoon's new book Earth in Human Hands (Grand Central Publishing, 2016) has much to say about the Anthropocene, but as anyone who has read the work of this canny scientist knows, he's not one to let facile assumptions get by unquestioned. For if the activity of humans is now emerging as an agent of geological change, then we are discussing our civilization in the same terms we talk about planetary forces like tectonic movement and the carbon cycle. This makes us major players whose effects we can begin to chart in terms of the effects of our technology on Earth's living systems. If the Anthropocene is happening, it presents us not only with danger but the prospect of a long-term future. And its implications take in not just our...
Proxima Centauri Observations Launch Parkes Effort
In the last two days we've looked at a discussion of a possible SETI observable, a 'shielding swarm' that an advanced civilization might deploy in the event of a nearby supernova. As with Richard Carrigan's pioneering searches for Dyson swarms in the infrared, this kind of SETI makes fundamentally different assumptions than the SETI we've grown familiar with, where the hope is to snag a beacon-like signal at radio or optical wavelengths. So-called 'Dysonian SETI' assumes no intent to communicate. It is about observing a civilization's artifacts. Both radio/optical SETI and this Dysonian effort are worth pursuing, because we have no idea what the terms of any discovery of an extraterrestrial culture will be. The hope of receiving a deliberate signal carries the enthralling possibility that somewhere there is an Encyclopedia Galactica that we may one day gain access to, or at the least that there is a civilization that wants to talk to us. A Dysonian detection would tell us that...
‘Shielding Swarms’ & SETI Observables
If you’re on the Moon and learn that there has been a major solar eruption, your best course of action is to get inside an appropriate shelter somewhere below ground, where you can be shielded from its effects. By analogy, wouldn’t a future civilization on Earth be able to shield itself from the effects of a supernova or gamma ray burst by burrowing into the planet? In their paper on stellar explosions and risk mitigation, Milan ?irkovi? and Branislav Vukoti? argue against the idea, which runs into problems on multiple levels. For one thing, while the duration of gamma ray emissions is generally short -- on the order of a hundred seconds or less -- the pulse of accelerated cosmic rays from a supernova or GRB blast is likely to last much longer, perhaps a matter of months or even years. Digging to avoid the worst of the effects would take you deep into the ground indeed. The authors cite work showing that you would need to burrow up to 3 kilometers below the surface before the...
Risk Mitigation for Advanced Civilizations
Alastair Reynolds’ 2008 novel House of Suns contains what must be the most outrageous solution for an endangered civilization I’ve ever encountered. Set some 6 million years in the future, the story involves technologies at the Kardashev Type III level -- in other words, civilizations that are capable of harnessing the energy of entire galaxies. At one point, a supermassive star whose pending death threatens a local civilization is enclosed in an enormous ‘stardam,’ made out of remnant ‘ringworlds’ from a long-lost culture that litter the galaxy. I believe we’re normally considered to be at about Kardashev level 0.7, so a feat like this is utterly the stuff of science fiction, but in Reynolds’ hands it makes for a robust tale. Here’s how future humans discuss it in the novel: To dam a star, to enclose it completely, would require the construction of a Dyson shell. Humans can shroud a star with a swarm of bodies, a Dyson cloud, but we cannot forge a sphere. Instead we approximate one...