New Work on Planet Nine

Considering how long we've been thinking about a massive planet in the outer Solar System — and I'm going all the way back to Percival Lowell's Planet X here — the idea that we might find the hypothetical Planet Nine in just three years or so is a bit startling. But Caltech's Mike Brown and colleague Konstantin Batygin, who predicted the existence of the planet last January based on its effects on Kuiper Belt objects, are continuing to search the putative planet's likely orbital path, hoping for a hit within the next few years, a welcome discovery if it happens. The duo are working with graduate student Elizabeth Bailey, lead author of a new study being discussed at the American Astronomical Society's Division for Planetary Sciences meeting in Pasadena, which is occurring in conjunction with the European Planetary Science Congress. The new paper is all about angles and alignments, focusing on the fact that the relatively flat orbital plane of the planets is tilted about...

read more

New Horizons: Looking Further Out

We're getting close on New Horizons data, all of which should be downlinked as of this weekend. Although that's a welcome marker, it hardly means the end of news from the doughty spacecraft. For one thing, we have years of analysis ahead of us as we bring the abundant data from the spacecraft's instrument packages into focus. For another, we're still in business out there in the Kuiper Belt, heading for that interesting object 2014 MU69. Who knows what will turn up at the latter, given our propensity to be surprised at every turn in interplanetary exploration, from Triton's volcanic plains to fabulously fractured Miranda. And, of course, Pluto and Charon themselves, which turned out to be so interesting that Alan Stern, principal investigator for New Horizons, is already talking about future missions there. But back to 2014 MU69, which has continued to be the subject of Hubble observations even as New Horizons homes in on the object. As this news release from the mission points out,...

read more

Antimatter Sail: Focus on Storage

An antimatter sail, as described yesterday in the work of Gerald Jackson and Steve Howe, is an exciting idea particularly because it relies on only small amounts of antimatter, tapping its energies to create fission in a uranium-enriched sail. Thus the uranium is the fuel and the antimatter, as Jackson says, is the 'spark plug.' We reduce the needed amount of antimatter and define what the new Kickstarter campaign calls "...the first proposed antimatter-based propulsion system that is within the near-term ability of the human race to produce." The antimatter sail produces fission by allowing antimatter, stored probably as antihydrogen, to drift across to the sail, and as we saw yesterday, the potential for velocities up to 5 percent of lightspeed mean that such a sail could be deployed on interstellar missions. Proxima Centauri naturally emerges as a target, but Jackson and Howe's work is not a result of recent interest in that star and its one known planet. The 2002 study in which...

read more

Antimatter and the Sail

An antimatter probe to a nearby star? The idea holds enormous appeal, given the colossal energies obtained when normal matter annihilates in contact with its antimatter equivalent. But as we’ve seen through the years on Centauri Dreams, such energies are all but impossible to engineer. Antimatter production is infinitesimal, the by-product of accelerators designed with a much different agenda. Moreover, antimatter storage is hellishly difficult, so that maintaining large quantities in a stable condition requires multiple breakthroughs. All of which is why I became interested in the work Gerald Jackson and Steve Howe were doing at Hbar Technologies. Howe, in fact, became a key source when I put together the original book from which this site grew. This was back in 2002-2003, and I was captivated with the idea of what could be called an ‘antimatter sail.’ The idea, now part of a new Kickstarter campaign being launched by Jackson and Howe, is to work with mere milligrams of antimatter,...

read more

Cosmology: Shelter from the Storm

I had thought while the power was out this past week that I would like to write about cosmology when it came back. That's because there's nothing like a prolonged power outage to adjust your perspective. The big picture beckons. In my case, it was thinking about how trivial being out of power was compared to those who had lost so much more in the wake of the recent hurricane. So thinking about the cosmos became my shelter from the storm. I appreciated the emails from so many of you, but aside from a major chunk of tree that landed on the roof, we did just fine. In fact, it was deeply moving to see people from the neighborhood -- some I knew, some I only recognized -- turn up to get up on the roof and move that tree. I'm always reminded to do more for the people around me when I see something like this, and apprehensive that my resolution to do so all too often gets put aside as normal life returns. The Universe We Can See Reading by candlelight really is wonderful, and I ask myself...

read more

Working in the Dark

Hurricane Matthew's effects continue to be felt in the form of flooding, power outages and downed trees. I'm now told not to expect power for 4-6 days. The situation obviously impacts my ability to post here. I'll try to keep up with comment moderation when possible. Will get things back to normal whenever the lights come back on.

read more

Spiral Density Waves: Clue to Planet Formation?

Have a look at the spiral of pinwheeling dust that can be seen around the young star Elias 2-27. We're looking at gravitational perturbations in a protoplanetary disk that, as this National Radio Astronomy Observatory news release says, mimic the vast arms we expect in a spiral galaxy. But here we're looking at a process with implications for planet formation, one that draws on data from the Atacama Large Millimeter/submillimeter Array (ALMA). This is the first time a spiral density wave has been detected in a protoplanetary disk's planet formation areas. Image: ALMA peered into the Ophiuchus star-forming region to study the protoplanetary disk around the young star Elias 2-27. Astronomers discovered a striking spiral pattern in the disk. This feature is the product of density waves - gravitational perturbations in the disk. Credit: L. Pérez (MPIfR), B. Saxton (NRAO/AUI/NSF), ALMA (ESO/NAOJ/NRAO), NASA/JPL Caltech/WISE Team. Some 450 light years from Earth in the Ophiuchus...

read more

Detecting Long-Period Planets & Stellar Companions

Spotting planets a long way from their stars is no easy proposition when you’re using radial velocity methods. The idea is to track the minute movement of the star as it is affected by an orbiting planet, which shows up as a Doppler shift in the data. What we’re actually seeing is the star and planet orbiting the center of gravity, an indirect method of detection that observes not the planet itself but the effects of the planet as it produces this variation in radial velocity. The first exoplanets were detected this way, and the method has continued to produce new discoveries. But as a planet’s distance from its star increases, radial velocity becomes tricky to use. Now observation times become extended as the planet completes its longer orbit. We face the same issue with the transit method, which charts the drop in brightness as a planet moves across the face of its star as seen from Earth. Here, too, planets in distant orbits around their star are hard to detect because of the...

read more

On Outer System Oceans

Back in the days when I was reading Poul Anderson's The Snows of Ganymede and thought of the moons of Jupiter as icy wastelands, I never would have dreamed there could be an ocean below their surfaces. But now we have oceans proliferating. Ganymede's may contain more water than all Earth's oceans, while Callisto is also in the mix, and we've known about Europa for some time now. At Saturn, the case for an ocean inside Titan seems strong, while Enceladus continues to spark mission proposals to study its frequent geysers. If you're a Centauri Dreams regular, you know that we've talked about Pluto's oceanic possibilities for some time, now strengthened in new work from Brandon Johnson (Brown University). Johnson and colleagues have modeled an ocean layer on Pluto more than 100 kilometers thick, with a salt content more or less like that of the Dead Sea on Earth. Johnson focused on Sputnik Planum, the 900-kilometer basin that comprises part of the heart-shaped feature we all learned to...

read more

System Evolution: Delving into Brown Dwarf Disks

We’ve seen circumstellar disks around numerous stars, significant because it is from such disks that planets are formed, and we would like to know a good deal more about how this process works. Now we have word of planet-forming disks around several low-mass objects that fit into the brown dwarf range, and one small star about a tenth the mass of the Sun. With the brown dwarfs, we’re working with objects small enough to be at the boundary between planet and star. The work is led by Anne Boucher (Université de Montréal), whose team drew photometric data from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE) mission, allowing the detection of the objects at infrared wavelengths. Boucher notes the strong attraction such objects hold for astronomers: “Finding disks in low-mass systems is really interesting to us, because objects that exist at the lower limit of what defines a star and that still have disks that indicate planet formation can tell us...

read more

Thoughts on Rosetta’s End

A mission as complex as the European Space Agency's highly successful Rosetta is a compilation of interlocking parts. I always find it fascinating to look at the instrumentation aboard. Take Alice, a UV imaging spectrograph no bigger than a shoebox. Alice weighs in at less than 4 kilograms and draws a meager 4 watts of power, but it offered us a thousand times the data we could retrieve with similar instruments no more than a generation ago. Alice produced over 70,000 spectra in two years, according to its principal investigator, Alan Stern (a familiar name indeed for those interested in the outer Solar System!) With these data we're learning about the porous surface of the comet, its lack of exposed water ice, and the unexpected occurrence of molecular hydrogen around it. Rosetta's Ion and Electron Spectrometer (IES), likewise the work of the Southwest Research Institute, is another triumph of miniaturization, achieving the sensitivity of instruments weighing five times as much (IES...

read more

Time Out

No Centauri Dreams posts this week -- I'll be back next Monday. I've been running hard and it's time for a break. I'll keep up with comment moderation as best I can, though I'm going to be trying to catch up with many long overdue commitments outside the interstellar field in coming days. As always, thanks to all for the continuing support. See you soon!

read more

Circumbinary Planet Found in Microlensing Data

A circumbinary planet is one that orbits two stars, and to date we haven't found many of them. Word of a new detection comes from an event observed back in 2007 during a microlensing study called OGLE -- Optical Gravitational Lensing Experiment. OGLE is a Polish undertaking designed to study dark matter using gravitational microlensing, but while dark matter remains as dark as ever, the project has been able to deliver useful findings on distant exoplanets. A number of groups specializing in gravitational microlensing also contributed to this analysis. These are observation efforts not as well known to the public as Kepler or Gaia, but they're doing exceptional work: MOA (Microlensing Observations in Astrophysics); MicroFUN (Microlensing Follow-Up Network); PLANET (Probing Lensing Anomalies NETwork); and Robonet. Subsequent Hubble Telescope data were then applied to the analysis, confirming the discovery. Image: This artist's illustration shows a gas giant planet circling a pair of...

read more

Stormy ‘Space Weather’ for M-dwarf Planets?

Proxima Centauri b, that highly interesting world around the nearest star, is about 0.05 AU out from its primary. The figure leaps out to anyone new to red dwarf stars, because it's so very close to the star itself, well within the orbit of Mercury in our own system. But these are small, dim stars compared to our Sun, and hugging the star is essential to remain in the habitable zone. That also makes for very short years -- Proxima b completes an orbit every 11.2 days. Guillem Anglada-Escudé and colleagues reminded us in the discovery paper that among the many things we have to ask about this planet is whether or not it has a strong magnetic field. Because Proxima Centauri is known for flare activity, not to mention 400 times the X-ray flux the Earth receives. A magnetic field could help the planet hang on to its atmosphere, but just how strong would it need to be? Like any M-dwarf planet, then, Proxima b seems vulnerable. This thinking has ramifications much closer to home. We...

read more

Assessing the Asteroid Factor

I've always thought that the biggest driver for our next steps in space is the presence of asteroids. Asteroids affect us in two powerful ways, the first being that they are sources of potential wealth for companies like Deep Space Industries and Planetary Resources, as commercial operations use robotics and eventually humans to extract water and precious metals. Likewise significant is that near-Earth asteroids are a reminder that developing the tools for altering an asteroid trajectory is a good insurance policy for planetary protection. Asteroids go past us all the time. I count eight that will move past the Earth between now and October 1, the closest -- 2015 SO2 and 2015 DS53 -- moving within 17 lunar distances. There's nothing to worry about in this list, as all have zero chance of impacting the Earth. Looking ahead to the first 20 days of October, the closest pass will be by asteroid 462959, at 15 lunar distances. A lunar distance is 384,401 kilometers, and it's how the Minor...

read more

A Rapidly Disintegrating Comet

Comet 332P/Ikeya-Murakami has had a short but colorful history in our observations. First detected in 2010 by two amateur astronomers in Japan, the comet has been spinning off debris at least since 2015 and probably earlier. A large fragment, as big as Comet 332P itself, may have broken off in 2012. Still close to the comet, its discovery prompted a team led by David Jewitt (UCLA) to request time on the Hubble Space Telescope to study what was happening. Among a long page of posted quotations on Jewitt's UCLA website is this by Erwin Schrodinger: "The task is, not so much to see what no one has yet seen; but to think what nobody has yet thought, about that which everybody sees." In this case, what everybody now sees is our most in-depth look at a comet's disintegration ever. The trick is what to make of what we see. The Hubble observations, taken in early 2016, show us 25 separate fragments, mixtures of dust and ice that are slowly separating from the comet at no more than the pace I...

read more

Puzzling Out Pluto’s X-Ray Emissions

The latest news from the Chandra X-Ray Observatory is that the spacecraft, 100 times more sensitive to X-ray sources than any previous X-ray telescope, has found that Pluto is emitting X-rays. This marks the first time we've detected X-rays from a Kuiper Belt object. In fact, until now, the previous most distant Solar System body with detected X-rays was Saturn. But four Chandra observing runs from early 2014 through the summer of 2015 have detected X-rays, in work on Pluto done in coordination with the the New Horizons effort. Carey Lisse (JHU/APL) led the Chandra observing runs, working with New Horizons co-investigator Ralph McNutt (also at JHU/APL). Says Lisse: "We've just detected, for the first time, X-rays coming from an object in our Kuiper Belt, and learned that Pluto is interacting with the solar wind in an unexpected and energetic fashion. We can expect other large Kuiper Belt objects to be doing the same." The New Horizons pass by Pluto/Charon in July of last year is a...

read more

Project Orion: A Nuclear Bomb and Rocket – All in One

Larry Klaes has been a part of Centauri Dreams almost since the first post. That takes us back to 2004, and while I didn't have comments enabled on the site for the first year or so, I remember talking to Larry about my Centauri Dreams book by email. Ever since, this author and freelance journalist with a passion for spaceflight has contributed articles, comments and ideas, as he does again today. Project Orion caught Larry's attention as a way of using known technologies to enable daring deep space missions. The essay below gives us an overview of Orion and its possibilities, looking at a concept that never flew but still captures the imagination. In addition to his active freelancing, Larry has been editor of SETIQuest magazine and president of the Boston chapter of the National Space Society. He now writes regularly for SpaceFlight Insider, where this article originally appeared. by Larry Klaes Image: Project Orion concept. Image Credit: Adrian Mann. At their most fundamental...

read more

Looking at Gaia’s Sky

The European Space Agency's Gaia satellite has delivered a catalog of more than a billion stars -- 1142 million, to be more specific -- as it continues the work of mapping our galaxy in three dimensions. To be sure, we can expect much more from Gaia, but the September 14 data release is a milestone, offering distances and proper motion for more than 2 million stars. The mission's first public release collects 14 months of data, from July 2014 to September 2015. "The beautiful map we are publishing today shows the density of stars measured by Gaia across the entire sky, and confirms that it collected superb data during its first year of operations," says Timo Prusti, Gaia project scientist at ESA. To get an idea of Gaia's long-term promise, recall that we are looking at the galaxy with Hubble-like precision. We may have more than a billion stars in today's release, but 400 million of these are appearing in a catalog for the first time. Image: An all-sky view of stars in our Galaxy -...

read more

On Charon’s Unusual North Pole

Deep space exploration brings a surprise with each new destination. New Horizons made the point over and over again, and today we get word of new work on one of the mission's discoveries, that dark red polar cap at the north of Pluto's large moon Charon. Will Grundy (Lowell Observatory) and colleagues are behind the study, which digs into the theory that methane from Pluto's atmosphere is trapped at Charon's north pole. In a new paper in Nature, Grundy and team have used New Horizons mission data in conjunction with their own modeling of the evolution of Charon's ice cap over the course of a Plutonian year to demonstrate that the model of trapped methane works. It involves the processing of methane into complex organic molecules called tholins. From the paper: The distribution of dark, reddish material around Charon's northern pole is notable for its generally symmetric distribution across longitudes and its gradual increase with latitude, although there are local irregularities...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives