Naming New Worlds

I can only wonder what Miguel de Cervantes Saavedra would have thought of the idea that a distant star would one day be named for him. I wonder, too, what the Spanish novelist (1547-1616) would have made of the idea that planets circled other stars, and that planets around the star named for him would have names taken from his most famous work, Don Quixote. Maybe the great character of the book's title, obsessed with tales of chivalry, would have been unhinged enough to take things like other solar systems in stride. We have the NameExoWorlds contest to thank for these speculations. The contest, organized by the International Astronomical Union (IAU) gave the public the opportunity to choose the names of selected stars and planets. The star named for Cervantes is mu Arae (HD 160691), a G-class star about fifty light years out in the constellation Ara (the Altar). Here we've found three gas giant planets comparable to Jupiter as well as a 'super-Earth.' And frankly, as a reader who...

read more

‘Hot Jupiters’: Water Depletion Explained

Planets that transit across their star as seen from Earth allow us to use transmission spectroscopy to study their atmospheres. The idea is straightforward: Even though we can't see the planet at optical wavelengths, we can examine the starlight that travels through its outer atmosphere during the transit. Each atmosphere leaves its own signature, and the atmospheres of some of the 'hot Jupiters' thus far studied have raised questions. Why do some of these worlds have less water than our models of their atmospheres would predict? Is this an indication that such planets formed in protoplanetary disks that were depleted of water? A new study brings us some answers by going to work on eight hot Jupiters (WASP-6b, WASP-12b, WASP-17b, WASP-19b, WASP-31b, WASP-39b, HAT-P-1b and HAT-P-12b) using the Hubble Space Telescope. The worlds chosen here offer a wide range of temperature, surface gravity, mass and radii. All eight were observed at optical wavelengths using Hubble's Space Telescope...

read more

SETI: Project Argus and the Long Stare

I think you'll find Jon Lomberg's new essay in Slate as interesting as I do. We Need a World Cup for SETI uses a familiar figure at many sports events -- the guy in the stands holding up a Biblical reference on a poster -- to dig into a far more interesting issue. How does one go about maximizing visibility? The guy with the sign knows how to do it and if we think about his methods, we can better understand SETI. For as we think about radio and optical SETI, we're usually looking for signals that have been intentionally sent. Here we run into the particularly tricky business of trying to understand the thinking of an alien being, but there are certain principles that may apply to any civilization trying to send out a beacon-like message. The message needs to be short, cheap, easy to find, and in a place where it's likely to be seen. So what kind of beacon is this going to be? We've discussed 'Benford beacons' in these pages before (see, among others in the archive, Detecting a...

read more

Catching Up with Dawn at Ceres

The Dawn spacecraft has reached its final orbital altitude, closing to within 385 kilometers of the asteroid (and yes, I really should start calling Ceres a 'dwarf planet' consistently -- working on it). We have no observations from this distance yet, but that process begins within days, and should give us images with a resolution of 35 meters per pixel, along with a wealth of data from the craft's scientific package. Like New Horizons, Dawn makes history every time it returns observations of places we haven't seen before, or surface features we're seeing at higher resolution as the orbit lowers. Unlike New Horizons, Dawn is an orbiter, which makes me long for the idea of a Pluto orbiter, even though New Horizons has amply demonstrated how useful and powerful a flyby mission can be. An orbiter lets you complete the mapping process so essential to making a new world tangible, while there are parts of Pluto that our flyby couldn't make out at highest resolution. I found the...

read more

ALMA: Interesting Objects in the Outer System

Two papers have appeared on the arXiv server suggesting hitherto undiscovered objects in the outer Solar System (thanks to Centauri Dreams reader Stevo Darkly for the pointer). Both papers use data harvested by the Atacama Large millimeter/submillimeter array (ALMA), an interferometer of radio telescopes in Chile’s northern high desert. Here some 66 12-meter and 7-meter radio telescopes work the sky at millimeter and submillimeter wavelengths, with targets that have ranged from galactic dust in the early universe to magnetic fields near a supermassive black hole. ALMA’s uses closer to home are made clear in the new papers, which demonstrate that this array can be a major tool in helping us probe the outer system well into the Oort Cloud. In the first paper, the researchers draw on three periods of observation with ALMA to detect point-like emissions at different positions in two of the periods. The two emissions are thought to be the same source, considering what the authors call...

read more

Where to Look for Rocky Planets

If you were trying to identify the kind of star that should produce Earth-like planets, you’d think the task would be straightforward. Our theories of planet formation focus on a circumstellar disk around a young star out of which planets form, and we’ve already gathered evidence that gas giant worlds are more likely to form around stars that are rich in iron. Since rocky planets are rich in iron and silicon, doesn’t this mean their stars should be rich in metallic elements? New work out of the Carnegie Institution for Science suggests that the answer is surprisingly complex. As presented by Johanna Teske at the Extreme Solar Systems III meeting in Hawaii, the team’s work has revealed that smaller planets do not require high iron content in their parent stars. In fact, looking at the abundance of 19 different elements in seven stars orbited by at least one rocky planet (these are drawn from the Kepler catalog), the team finds that rocky worlds do not preferentially form around stars...

read more

A Bill for a Starfaring Future

Back in 2012 I reported on Peter Garretson's What Our Civilization Needs is a Billion Year Plan, an essay advocating a robust human expansion to the stars. Lt. Col. Garretson lives and breathes futuristic issues. A transformational strategist for the US Air Force, he has served as an airpower strategist and strategic policy advisor to the Chief of Staff of the Air Force on his Strategic Studies Group, the Chief of Irregular Warfare Strategy, Plans and Policy, and spent four years as the Chief of Future Technology for HQ USAF Strategic Planning. He is currently an Instructor of Joint Warfare at Air Command and Staff College and the lead for Space Horizons, Air University's endeavor to "re-imagine spacepower in the age of asteroid mining." A long-time space advocate, he has written widely on issues ranging from planetary defense to solar power; you can follow his work at his website: http://www.petergarretson.com/. In today's open letter to Centauri Dreams, he lays down a first draft...

read more

The Best Pluto Imagery Yet

I finally have a landscape to attach to Larry Niven's classic "Wait It Out," a tale of shipwreck on Pluto. The New Horizons imagery is giving us resolutions of 77-85 meters per pixel, so that we can, as this JHU/APL news release reminds us, see features less than half the size of a city block. The one below is the one that has me captivated because it reminds me of the Niven tale, in which a team of astronauts becomes stranded on Pluto's surface, and the protagonist deliberately exposes himself to the vacuum to place himself into cryogenic storage. A man can stay conscious for tens of seconds in vacuum. If I moved fast, I could get out of my suit in that time. Without that insulation to protect me, Pluto's black night would suck warmth from my body in seconds. At 50° Absolute, I'd stay in frozen storage until one version or another of the Day of Resurrection. And then this: A superconductor is what I am. Sunlight raises the temperature too high, switching me off like a damned...

read more

ACEsat: Alpha Centauri and Direct Imaging

A dedicated spacecraft just to investigate the Alpha Centauri system? I've been fascinated with the nearest stars since boyhood, so the ACEsat concept Ashley Baldwin writes about today would have my endorsement. But budgetary realities and practical mission planning might demand a larger instrument capable of studying more distant targets. Dr. Baldwin, a committed amateur astronomer, is consultant psychiatrist at the 5 Boroughs Partnership NHS Trust (Warrington, UK). His deep knowledge of telescope technologies has served us well in the past, and now takes us into the realm of mission planning beyond the James Webb Space Telescope. by Ashley Baldwin ACEsat is a revolutionary all silicon carbide, 45 cm telescope concept with a bespoke built in Phase Induced Amplitude Apodisation (PIAA) coronagraph designed to image planets (in five selected visible-wavelength bands from 400-700 nm) in the habitable zones of Alpha Centauri A and B. It was designed to take advantage of studies that show...

read more

Kepler: A New Look at False Positives

Oh to be in Hawaii for the Extreme Solar Systems III conference rather than simply following events on Twitter! The exoplanet community's choice of venues for these gatherings is hard to beat, the first of them, in 2007, having occurred on Santorini, a storied island in the Aegean Sea southeast of the Greek mainland, with a 2011 follow-up in Jackson Hole, WY. If you haven't been following events on Twitter (#ExSS3), you can at least check the full program with abstracts online, where you'll see quite a few familiar names. Alexandre Santerne's session at ExSS3 is one I wish I could have sat in on yesterday. Leading an international team, Santerne (Instituto de Astrofísica e Ciências do Espaço, Portugal) has gone to work on Kepler detections of gas giants. You would think that planets of this size would be fairly straightforward detections, but it turns out that this is not the case. In fact, Santerne and team find that half of the giant exoplanet candidates are false positives. To be...

read more

A Thoroughly Disrupted Solar System

A quick follow-up on our most recent discussion of KIC 8462852 (and thanks to all for the continuing high level of discussion in the comments) because today’s topic touches on a bit of the same ground. Centauri Dreams regular Harry Ray was first to notice a paper from Eva Bodman and Alice Quillen (University of Rochester) titled “KIC 8462852: Transit of a Large Comet Family.” From the paper: ...if the comet family model is correct, there is likely a planetary companion forming sungrazers. Since the comets are still tightly clustered within each dip, a disruption event likely occurred recently within orbit, like tidal disruption by the star. This comet family model does not explain the large dip observed around day 800 and treats it as unrelated to the ones starting at day 1500. The flux changes too smoothly and too slowly to be easily explained with a simple comet family model. I’ve only had the chance to glance at this work so far, but it’s heartening to see another paper analyzing...

read more

Habitable Planets in the Same System

Learning that our own Solar System has a configuration that is only one of many possible in the universe leads to a certain intellectual exhilaration. We can, for example, begin to ponder the problems of space travel and even interstellar missions within a new context. Are there planetary configurations that would produce a more serious incentive for interplanetary travel than others? What would happen if there were not one but two habitable planets in the same system, or perhaps orbiting different stars of a close binary pair like Centauri A and B? My guess is that having a clearly habitable world -- one whose continents could be made out through ground-based telescopes, and whose vegetation patterns would be obvious -- as a near neighbor would produce a culture anxious to master spaceflight. Imagine the funding for manned interplanetary missions if we had a second green and blue world that was as reachable as Mars, one that obviously possessed life and perhaps even a civilization....

read more

No Catastrophic Collision at KIC 8462852

Last week I mentioned that I wanted to get into Massimo Marengo’s new paper on KIC 8462852, the interesting star that, when studied by the Kepler instrument, revealed an intriguing light curve. I’ve written this object up numerous times now, so if you’re coming into the discussion for the first time, plug KIC 8462852 into the archive search engine to get up to speed. Marengo (Iowa State) is himself well represented in the archives. In fact, I began writing about him back in 2005, when he was working on planetary companions to Epsilon Eridani. In the new paper, Marengo moves the ball forward in our quest to understand why the star I’ll abbreviate as KIC 8462 poses such problems. The F3-class star doesn’t give us the infrared signature we’d expect from a debris disk, yet the light curves we see suggest objects of various sizes (and shapes) transiting across its surface. What we lacked from Tabetha Boyajian’s earlier paper (and it was Boyajian, working with the Planet Hunters group,...

read more

Will We Stop at Mars?

In the heady days of Apollo, Mars by 2000 looked entirely feasible. Now we're talking about the 2030s for manned exploration, and even that target seems to keep receding. In the review that follows, Michael Michaud looks at Louis Friedman's new book on human spaceflight, which advocates Mars landings but cedes more distant targets to robotics. So how do we reconcile ambitions for human expansion beyond Mars with political and economic constraints? A career diplomat whose service included postings as Counselor for Science, Technology and Environment at U.S. embassies in Paris and Tokyo, and Director of the State Department's Office of Advanced Technology, Michael is also the author of Contact with Alien Civilizations (Copernicus, 2007). Here he places the debate over manned missions vs. robotics in context, and suggests a remedy for pessimism about an expansive future for Humankind. by Michael A.G. Michaud Many people in the space and astronomy communities will know of Louis Friedman,...

read more

A Cometary Solution for KIC 8462852?

KIC 8462852 is back in the news. And despite a new paper dealing with the unusual star, I suspect it will be in the news for some time to come, for we’re a long way from finding out what is causing the unusual light curves the Planet Hunters group found in Kepler data. KIC 8462, you’ll recall, clearly showed something moving between us and the star, with options explored by Tabetha Boyajian, a Yale University postdoc, in a paper we examined here in October (see KIC 8462852: Cometary Origin of an Unusual Light Curve? and a series of follow-up articles). To recap, we’re seeing a light curve around this F3-class star that doesn’t look anything like a planetary transit, but is much more suggestive of debris. Finding a debris disk around a star is not in itself unusual, since we’ve found many such around young stars, but KIC 8462 doesn’t appear to be a young star when looked at kinematically. In other words, it’s not moving the way we would expect from a star that has recently formed....

read more

Huge Flares from a Tiny Star

Just a few days ago we looked at evidence that Kepler-438b, thought in some circles to be a possibly habitable world, is likely kept out of that category by flare activity and coronal mass ejections from the parent star. These may well have stripped the planet’s atmosphere entirely (see A Kepler-438b Caveat - and a Digression). Now we have another important study, this one out of the Harvard-Smithsonian Center for Astrophysics, taking a deep look at the red dwarf TVLM 513–46546 and finding flare activity far stronger than anything our Sun produces. Led by the CfA’s Peter Williams, the team behind this work used data from the Atacama Large Millimeter/submillimeter Array (ALMA), examining the star at a frequency of 95 GHz. Flares have never before been detected from a red dwarf at frequencies as high as this. Moreover, although TVLM 513 is just one-tenth as massive as Sol, the detected emissions are fully 10,000 times brighter than what our star produces. The four-hour observation...

read more

The 3 Most Futuristic Talks at IAC 2015

Justin Atchison’s name started appearing in these pages all the way back in 2007 when, in a post called Deep Space Propulsion via Magnetic Fields, I described his work at Cornell on micro-satellites the size of a single wafer of silicon. Working with Mason Peck, Justin did his graduate work on chip-scale spacecraft dynamics, solar sails and propulsion via the Lorentz force, ideas I’ve tracked ever since. He’s now an aerospace engineer at the Johns Hopkins University Applied Physics Laboratory, where he focuses on trajectory design and orbit determination for Earth and interplanetary spacecraft. As a 2015 NIAC fellow he is researching technologies that enable asteroid gravimetry during spacecraft flybys. In the entry that follows, Justin reports on his trip to Jerusalem for this fall’s International Astronautical Congress. by Justin A. Atchison Greetings. I’m Justin Atchison, an aerospace engineer at the Johns Hopkins University Applied Physics Laboratory. I’m proud to have previously...

read more

The Cereal Box

"No matter how these issues are ultimately resolved, Centauri Dreams opts for the notion that even the back of a cereal box may contain its share of mysteries." I wrote that line in 2005, and if it sounds cryptic, read on to discover its origins, ably described by Christopher Phoenix. I first encountered Christopher in an online discussion group made up of physicists and science fiction writers, where his knack for taking a topic apart always impressed me. A writer whose interest in interstellar flight is lifelong, he is currently turning his love of science fiction into a novel that, he tells me "incorporates some of the ideas we talk about on Centauri Dreams as a background setting." Today's essay examines the ideas of a physicist who dismissed the idea of interstellar flight entirely, while using a set of assumptions Christopher has come to challenge. by Christopher Phoenix "All this stuff about traveling around the universe in space suits -- except for local exploration which I...

read more

Directly Imaging a Young ‘Jupiter’

Centauri Dreams continues to follow the fortunes of the Gemini Planet Imager with great interest, and I thank Horatio Trobinson for a recent note reminding me of the latest news from researchers at the Gemini South installation in Chile. The project organized as the Gemini Planet Imager Exoplanet Survey is a three-year effort designed to do not radial velocity or transit studies but actual imaging of young Jupiters and debris disks around nearby stars. Operating at near-infrared wavelengths, the GPI itself uses adaptive optics, a coronagraph, a calibration interferometer and an integral field spectrograph in its high-contrast imaging work. Launched in late 2014, the GPIES survey has studied 160 targets out of a projected 600 in a series of observing runs, all the while battling unexpectedly bad weather in Chile. Despite all this, project leader Bruce Macintosh (Stanford University), the man behind the construction of GPI, has been able to announce the discovery of the young 'Jupiter'...

read more

A Kepler-438b Caveat (and a Digression)

Before we go interstellar, a digression with reference to yesterday's post, which looked at how we manipulate image data to draw out the maximum amount of information. I had mentioned the image widely regarded as the first photograph, Joseph Nicéphore Niépce's 'View from the Window at Le Gras.' Centauri Dreams regular William Alschuler pointed out that this image is in fact a classic example of what I'm talking about. For without serious manipulation, it's impossible to make out what you're seeing. Have a look at the original and compare it to the image in yesterday's post, which has been processed to reveal the underlying scene. Image: New official image of the first photograph in 2003, minus any manual retouching. Joseph Nicéphore Niépce's View from the Window at Le Gras. c. 1826. Gernsheim Collection Harry Ransom Center / University of Texas at Austin. Photo by J. Paul Getty Museum. And here again is the processed image, a much richer experience. The...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives