I want to revisit the paper on KIC 8462852 briefly this morning, as I’m increasingly fascinated with the astrophysics we’re digging into here. The fact that the star, some 1480 light years away, is also a candidate for further SETI investigation makes it all the more intriguing, but all my defaults lean toward natural processes, if highly interesting ones. Let’s think some more about what we could be looking at and why the ‘cometary’ hypothesis seems strongest. Remember that we’re looking at KIC 8462852 not only because the Kepler instrument took the relevant data, but because the Kepler team took advantage of crowdsourcing to create Planet Hunters, where interested parties could sign up to study the light curves of distant stars on their home computers. KIC 8462852 has been causing ripples since 2011 because while we do seem to be seeing something passing between its light and us, that something is not a planet but a large number of objects in motion around the star. Some of the...
KIC 8462852: Cometary Origin of an Unusual Light Curve?
Dysonian SETI operates under the assumption that our search for extraterrestrial civilizations should not stop with radio waves and laser communications. A sufficiently advanced civilization might be visible to us without ever intending to establish a dialogue, observed through its activities around its parent star or within its galaxy. Find an anomalous object difficult to explain through conventional causes and you have a candidate for much closer examination. Is KIC 8462852 such a star? Writing for The Atlantic, Ross Andersen took a look at the possibilities yesterday (see The Most Mysterious Star in Our Galaxy), noting that this F3-class star puts out a light curve indicating not a planetary transit or two, but a disk of debris. That wouldn't be cause for particular interest, as we've found numerous debris disks around young stars, but by at least one standard KIC 8462852 doesn't appear to be young. In a paper on this work, Tabetha Boyajian, a Yale University postdoc, and...
A Mission to Jupiter’s Trojans
Back in 2011, a four planet system called Kepler-223 made a bit of a splash. Researchers led by Jack Lissauer (NASA Ames) at first believed they were looking at two planets that shared the same orbit around their star, each circling the primary in 9.8 days. These co-orbital planets were believed to be in resonance with the other two planets in the system. If the finding were confirmed, it would indicate that one planet had found a stable orbit in a Lagrange point -- the L4 and L5 Lagrange points lie 60° ahead and behind an orbiting body. We call an object sharing an orbit like this a trojan, as shown in the figure below, which depicts the best known trojans in our system, the asteroids associated with Jupiter. Image: Jupiter's extensive trojan asteroids, divided into 'Trojans' and 'Greeks' in a nod to Homer, but all trojans nonetheless. Credit: "InnerSolarSystem-en" by Mdf at English Wikipedia - Transferred from en.wikipedia to Commons. Licensed under Public Domain via...
Pluto’s Circumbinary Moons
Kepler-47 is an eclipsing binary some 4900 light years from Earth in the direction of the constellation Cygnus. It's a system containing two transiting circumbinary planets, meaning the planets orbit around the binary pair rather than around one or the other star. That configuration caught the eye of Simon Porter, a postdoc at the Southwest Research Institute, because the configuration is so similar to another circumbinary system, the one involving four small moons around Pluto/Charon. In both cases, we have a binary at the center of the orbit. Porter writes about the configuration in this post from the New Horizons team. In the case of Pluto, the binary could be considered a binary planet, with Charon the other half of the duo. Both are orbited by a system of four moons, each of them less than 50 kilometers in diameter, the moons orbiting around the system's center of mass. New Horizons, the gift that keeps on giving, has already sent some striking images of these small moons, but...
SETI: A Networked Galaxy?
We often conceive of SETI scenarios in which Earth scientists pick up a beacon-like signal from another star, obviously intended to arouse our attention and provide information. But numerous other possibilities exist. Might we, for example, pick up signs of another civilization's activities, perhaps through intercepting electromagnetic traffic, or their equivalent of planetary radars? Even more interesting, as Brian McConnell speculates below, is the idea of listening in on a galactic network that contains information not just from one civilization but many. As Centauri Dreams readers know, McConnell and Alex Tolley have been developing the 'spacecoach' concept of interplanetary travel, discussed in the just published A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2015). It's a shrewd and workable way to get us deep into the Solar System. Today McConnell turns his attention to a SETI network whose detection could offer a big payoff for a young...
A Comparative Look at Solar Systems
With almost 2000 exoplanets now confirmed, not to mention candidates in the thousands, it's amazing to recall that it was just twenty years ago that the first planet orbiting a main sequence star beyond the Solar System was found. Continued work on the world revealed that 51 Pegasi b is about half as massive as Jupiter, though 50 percent larger. Orbiting its star in roughly four days, the planet is some fifty light years from Earth. Thus we began to learn not just that exoplanets were out there, but that their environments could be truly extreme -- remember that it was just in 1992 that planets were found around the pulsar PSR 1257+12. Without any evidence other than my imagination, I grew up believing that most stars should have planets, and just assumed that their stellar systems were more or less like our own. There should be a few planets too close to their star for life to exist, and several gas giants out at the outskirts of the system, and somewhere in between there should be...
AU Mic: Intriguing Features in a Protoplanetary Disk
The European Southern Observatory's SPHERE instrument is turning up interesting things around the star AU Microscopii. Surrounded by a large dusty disk, the star is young enough to raise the interest of those studying how planets form. What has turned up are structures that Anthony Boccaletti (Observatoire de Paris) describes as 'arch-like, or wave-like,' a structure that his research team has never seen before. The issue is addressed in a new paper in Nature, which discusses five wave-like arches at different distances from the star. Fortunately, AU Mic is a well studied star, with abundant Hubble imagery taken in 2010 and 2011 available for comparison. The results of that comparison are striking: The features do indeed show up on the Hubble imagery, but they show distinct change with time, meaning they are in rapid motion. "We reprocessed images from the Hubble data and ended up with enough information to track the movement of these strange features over a four-year period,"...
Habitability Index Ranks Exoplanets
If we had a space-based instrument fully capable of analyzing an exoplanet's atmosphere in place right now, where would we find our best targets? The goal, of course, is to pluck out the signature of biological activity, which means we're looking at planets in the habitable zone of their stars, that region where liquid water can exist on the surface. Right now there aren't many planets that fit the bill, but the day is coming when there will be hundreds, then thousands. How we optimize our search time and choose the targets with the most likely pay-off is a major issue. Which is where a new metric called the 'habitability index for transiting planets' comes into play. Developed by Rory Barnes and Victoria Meadows (University of Washington), working with research assistant Nicole Evans, the index is an attempt to prioritize the selection process, looking at those exoplanets that should be at the top of our list. Says Barnes: "Basically, we've devised a way to take all the...
Unusual Orbits for Unusual Missions
Our choice of orbits can create scientifically useful space missions that can be operated at lower cost than their more conventional counterparts. How this has been done and the kind of missions it could enable in the future is the subject of James Jason Wentworth's essay. An amateur astronomer and interstellar travel enthusiast, Wentworth worked at the Miami Space Transit Planetarium and volunteered at the Weintraub Observatory atop the adjacent Miami Museum of Science. Now making his home in Fairbanks (AK), he was the historian for the Poker Flat Research Range sounding rocket launch facility. His space history and advocacy articles have appeared in Quest: The History of Spaceflight magazine and Space News. by J. Jason Wentworth In the 1990s, then NASA Administrator Daniel S. Goldin introduced the "Better, Faster, Cheaper" paradigm for space missions. While NASA's subsequent experiences led many engineers to modify that to "Better, Faster, Cheaper--choose two," the goal of low cost...
Woven Light: The Orphan Obscura
Heath Rezabek began exploring Vessel, an evolving strategy for preserving Earth's cultures and biology, in these pages back in 2013. A librarian and writer in Austin TX, Heath went on to push these ideas into the realm of science fiction, in the form of a series of excerpts from a longer work that is still emerging. The concluding post in this sequence appears below, though you'll be hearing more about 'Woven Light.' A novel is emerging from this haunting look at how, at various points in our future and with a wide range of technologies, we will interact with the artifacts and stored experience of our past. Heath's helpful synopsis begins the post. by Heath Rezabek For some time, I have had in hand the final chapter – for now – of the Woven Light speculative fiction series as published on Centauri Dreams from 2013 to present. At Paul’s invitation, I am prefacing the final installment with some notes on the series as a whole. The series began as a way to explore ideas surrounding the...
An Asteroid Deflection Investigation
Yesterday's post on what we're learning about Rosetta's comet (67P/Churyumov-Gerasimenko) briefly touched on the issue of changing the orbit of such bodies for use in resource extraction. Moving the comet Grigg-Skjellerup is part of the plot of Neal Stephenson's novel Seveneves, where the idea is to support a growing human population in space with the comet's huge reserves of water. Just how hard it would be to move a comet is made clear by how a proposed near-term mission approaches the question of deflecting a small asteroid. The mission, discussed at the ongoing European Planetary Science Congress in Nantes, is called AIDA, for Asteroid Impact and Deflection Assessment. A joint mission being developed by the European Space Agency and NASA, AIDA is actually a two-pronged affair. ESA is leading the Asteroid Impact Mission (AIM), while NASA is behind the Double Asteroid Redirection Test (DART). The plan is to rendezvous with the asteroid (65803) Didymos and its tiny satellite (known...
Off on a Comet
Imagine what you could do with a comet at your disposal. In Seveneves, Neal Stephenson's new novel (William Morrow, 2015), a Musk-like character named Sean Probst decides to go after Comet Grigg-Skjellerup. A lunar catastrophe has doomed planet Earth and humanity is in a frantic rush to figure out how to save at least a fraction of the population by living off-world. Probst understands that a comet would be a priceless acquisition: "You can't make rocket fuel out of nickel. But with water we can make hydrogen peroxide -- a fine thruster propellant -- or we can split it into hydrogen and oxygen to run big engines…. We have to act immediately on long-lead-time work that addresses what we do know. And what we know is that we need to bring water to the Cloud Ark. Physics and politics conspire to make it difficult to bring it up from the ground. Fortunately, I own an asteroid mining company…" And so on. Lest you think that was a spoiler, be advised that it's just the tip of...
On Habitability around Red Dwarf Stars
Learning that there is flowing water on Mars encourages the belief that human missions there will have useful resources, perhaps in the form of underground aquifers that can be drawn upon not just as a survival essential but also to produce interplanetary necessities like rocket fuel. What yesterday's NASA announcement cannot tell us, of course, is whether there is life on Mars today, though if the detected water is indeed flowing up from beneath the surface, it seems a plausible conjecture that some form of bacterial life may exist below ground, a life perhaps dating back billions of years. I've speculated in these pages that we may in fact identify life around other stars — through studies of exoplanet atmospheres — before we find it elsewhere in our Solar System, given the length of time we have to wait before return missions to places like Enceladus and Europa can be mounted. Perhaps the Mars news can help us accelerate that schedule, at least where the Red Planet is...
Pluto, Bonestell and Richard Powers
Like the Voyagers and Cassini before it, New Horizons is a gift that keeps on giving. As I looked at the latest Pluto images, I was drawn back to Chesley Bonestell's depiction of Pluto, a jagged landscape under a dusting of frozen-out atmosphere. Bonestell's images in The Conquest of Space (Viking, 1949) took the post-World War II generation to places that were only dimly seen in the telescopes of the day, Pluto being the tiniest and most featureless of all. But paging through my copy of the book, I'm struck by how, in the case of Pluto, even Bonestell's imagination failed to do it justice. The sense of surprise that accompanies many of the incoming New Horizons images reminds me of Voyager's hurried flyby of Neptune and the 'canteloupe' terrain it uncovered on Triton back in 1989. On Pluto, as it turns out, we have 'snakeskin' terrain, just as unexpected, and likewise in need of a sound explanation. Image: In this extended color image of Pluto taken by NASA's New Horizons...
Seeing Alien Power Beaming
We've long discussed intercepting not only beacons but stray radio traffic from other civilizations. The latter may be an all but impossible catch for our technology, but there is a third possibility: Perhaps we can intercept the 'leakage' from a beamed power infrastructure used to accelerate another civilization's spacecraft. The idea has been recently quantified in the literature, and Jim Benford examines it here in light of a power-beaming infrastructure he has studied in detail on the interplanetary level. The CEO of Microwave Sciences, Benford is a frequent contributor to these pages and an always welcome voice on issues of SETI and its controversial cousin METI (Messaging to Extraterrestrial Intelligence). by James Benford Beaming of power to accelerate sails for a variety of missions has been a frequent topic on this site. It has long been pointed out that beaming of power for interplanetary commerce has many advantages. Beaming power for space transportation purposes can...
Another Search for Kardashev Type III
I have no idea whether we would be able to recognize a Kardashev Type III civilization if we saw one, but the search is necessary as we rule out some possibilities and examine others. As we saw yesterday, the Glimpsing Heat from Alien Technologies project at Penn State has examined data on 100,000 galaxies, finding 93 with mid-infrared readings that merit further study. One thing that we, operating with what we know about physics, would expect from a super-civilization is the production of waste heat, in the temperature range between 100 and 600 K, and that’s why previous searches for Dyson spheres have gone looking for such signatures. But Kardashev Type III is an extreme reach. We’re talking about a civilization capable of using the energies not just of its own star but of its entire galaxy, and just how this would be done is a question about which we can only speculate. As Erik Zackrisson (Uppsala University) and colleagues do in a new paper that balances nicely against Michael...
No Sign of Galactic Super-Civilizations
‘Dysonian SETI’ is all about studying astronomical data in search of evidence of advanced civilizations. As such, it significantly extends the SETI paradigm both backwards and forwards in time. It moves forward because it offers entirely new search space in not just our own galaxy but galaxies throughout the visible universe. But it also moves backward in the sense that we can use vast amounts of stored observational data from telescopes both ground- and space-based to do the work. We don’t always need new instruments to do SETI, or even new observations. With Dysonian SETI, we can do a deep dive into our increasingly abundant digital holdings. At Penn State, Jason Wright and colleagues Matthew Povich and Steinn Sigurðsson have been conducting the Glimpsing Heat from Alien Technologies (G-HAT) project, which scans data in the infrared from the Wide-field Infrared Survey Explorer (WISE) mission and the Spitzer Space Telescope. This is ground-breaking work that I’ve written about here...
Pluto as ‘Planet’
I have never been exactly indignant about the demotion of Pluto to 'dwarf planet' status but I do think it's curious and in at least one respect too arbitrary for my taste. I'll buy the idea that a planet needs to be round because of its own gravity, and I'll sign off on the notion that to be a planet, an object has to be in orbit around the Sun (even though we do have apparent wandering planets in the interstellar deep, far from any star). But the International Astronomical Union also decided in its 2006 deliberations that a planet has to 'clear' its neighborhood of debris, thus sweeping out its orbit over time. That one, of course, is controversial. Assuming the Earth is a planet, why are we worried about things like Near Earth Asteroids (NEAs)? Our planet clearly hasn't swept out its neighborhood, not when we can number problematic asteroids in the thousands. Jupiter is estimated to have about 100,000 trojan asteroids in its orbital path as well, and Alan Stern, principal...
Greg Matloff: Conscious Stars Revisited
It's no exaggeration to say that without Greg Matloff, there would have been no Centauri Dreams. After reading his The Starflight Handbook (Wiley, 1989) and returning to it for years, I began working on my own volume in 2001. Research for that book would reveal Matloff's numerous contributions in the journals, especially on solar sail technologies, where he illustrated early on the methods and materials needed for interstellar applications. A professor of physics at New York City College of Technology (CUNY) as well as Hayden Associate at the American Museum of Natural History, Dr. Matloff is the author of, among others, Deep Space Probes (Springer, 2005) and Solar Sails: A Novel Approach to Interplanetary Travel (with Les Johnson and Giovanni Vulpetti; Copernicus, 2008). His latest, Starlight, Starbright, is now available from Curtis Press, treating the controversial subject of today's essay. by Greg Matloff Introduction: Motivations As any web search will reveal, most of my...
New Look at ? Pictoris b
Given the scale of our own Solar System, the system circling the star Beta Pictoris can’t help but give us pause. Imagine not only the orbiting clouds of gas, dust and debris that we would expect around a young star (8-20 million years old) with a solar system in formation, but also a gas giant planet some ten to twelve times the mass of Jupiter, in an orbit something like Saturn’s. Now factor in this: The disk in question, if translated into our own system’s terms, would extend from about the orbit of Neptune to almost 2000 AU. Now we have a view of Beta Pictoris b as it moves through a small slice (one and a half years) of a 22 year orbital period. The work of Maxwell Millar-Blanchaer (a doctoral candidate at the University of Toronto) and colleagues, the imagery appears in a paper published yesterday by The Astrophysical Journal. Millar-Blanchaer used observations from the Gemini Planet Imager on the Gemini South telescope in Chile to image Beta Pictoris b, the work being part of...