An essay of mine called Distant Ruins is now available from Aeon Magazine, looking at a field that is increasingly becoming known as 'interstellar archaeology.' Rather than looking for radio or optical signals flagging an extraterrestrial culture, some scientists have asked whether a sufficiently advanced civilization might not have left evidence of its existence in the form of huge engineering projects, mining asteroids or breaking up entire planets to build Dyson spheres. Or perhaps so-called 'blue straggler' stars are evidence of a culture tinkering with its own sun. I speculate in Aeon that what we may someday detect in our rapidly growing astronomical databases is evidence not of living but long-vanished cultures, whose mega-engineering may stand as enigmatic evidence of beings that died before our Sun was born. We don't, after all, know how long technological civilizations live, and there is no reason to think them immortal. All of this plays into today's post because one of...
Exomoons: A Fine Line for Habitability?
Public interest in habitable moons around gas giant planets received a powerful boost from the film Avatar, where a huge world in an Earth-like orbit (Polyphemus) is accompanied by the extraordinary moon Pandora. We have no detections of such moons -- exomoons -- but as we’ve seen in earlier posts here, David Kipping (Harvard-Smithsonian Center for Astrophysics) continues the hunt through the HEK project (Hunt for Exomoons with Kepler). HEK looks for transit timing variations (TTV) and transit duration variations (TDV), the kind of perturbations that a substantial satellite would create in the orbital motion of the larger world around its star. While we wait for the first exomoon discovery -- a moon down to about 0.2 Earth masses should be detectable with these methods -- we’ve just gotten a look at exomoon issues from a new study of magnetic fields around giant planets. The work of René Heller (McMaster University) and Jorge Zuluaga (University of Antioquia, Colombia) finds that...
On Brown Dwarfs and Other Exotica
Knowing the position of a firefly within one inch from a distance of 200 miles would not be easy, but it's the kind of precision astronomers Adam Kraus and Trent Dupuy needed when trying to establish the distance of nearby brown dwarfs. The firefly simile belongs to Kraus (University of Texas at Austin), who with Dupuy (Harvard-Smithsonian Center for Astrophysics) embarked on a study of the initial sample of the coldest brown dwarfs discovered by the Wide-Field Infrared Survey Explorer satellite (WISE). Their paper appears today is Science Express online. Image: Brown dwarfs in relation to more familiar celestial objects. Credit: Gemini Observatory/Jon Lomberg. Just how cool can brown dwarfs get? When we're focusing on small dwarfs somewhere between 5 and 20 times the mass of Jupiter that have been cooling for billions of years, we're talking about objects whose only source of energy is gravitational contraction, and as Dupuy notes, the fine-grained distinctions between star and...
A White Dwarf Proposal for Kepler
With four years of collected data at hand, Kepler scientists will remain busy even with their spacecraft hobbled. We now know that we’re not going to get Kepler back to full working order following the degradation of two of its reaction wheels, but as this report noted on August 19, possibilities remain for scientific studies using the two remaining reaction wheels aided by thrusters to control the spacecraft’s attitude. And as we’re finding out, a ‘two-wheel’ Kepler mission may still offer opportunities, one of the more fascinating of which is our subject today. The proposed target is white dwarf stars, the remnants of stars whose mass is not high enough to produce a neutron star as they evolve past the red giant phase. A typical white dwarf has a mass similar to that of the Sun, but a volume close to that of the Earth. While Sirius B, at 8.6 light years out, is the closest known white dwarf, eight white dwarfs are believed to be present among the one hundred closest star systems to...
Sun-Skimming Planets (and a Riff on Brown Dwarfs)
It's time to catch up with recent exoplanet finds out of MIT as I start weaving in recent news with conference notes and ideas from other reading. Kepler 78b is much in the news because of its orbit, which takes it around its star in a breathtaking 8.5 hours, so that you can cram almost three Kepler 78b years into a single Earth day. That means, of course, that this is a planet that all but skims its star, with an orbital radius about three times the radius of the star. In Solar System terms, we're talking about a world forty times closer to its star than Mercury is to the Sun. Image: A scorched Kepler 78b may have yet more to tell us, as the article below explains. Credit: NASA/JPL-Caltech. With temperatures somewhere between 2300 K and 3100 K on the bright side (and I would assume this is a tidally locked world), we would be looking at a veritable ocean of lava on the surface. This MIT news release points out that because the researchers were able to detect the light emitted from...
A Directly Imaged ‘Second Jupiter’?
On the scale of Jon Lomberg’s Galaxy Garden, discussed here on Friday, the star GJ 504 is less than an inch away, representing some 60 light years. In fact, as Jon reminds visitors to the Garden in Hawaii, almost all the stars visible to the naked eye are contained in the volume equivalent of a single leaf. When I speak about interstellar matters I always try to find comparisons that get across the scale of the galaxy, but I can’t think of a better way to experience that scale than to walk through these gorgeous grounds near Kailua-Kona. As I think about GJ 504 and the Galaxy Garden, I’m also reminded that Kona is the source of one of my favorite coffees, yet another reason for making the trip. But yesterday afternoon I roasted some excellent El Salvador beans and I’m settling in with a brightly flavored mug as I write, just the thing to kick off the week. I begin it with GJ 504 because a team from the SEEDS project (Strategic Explorations of Exoplanets and Disks with Subaru) led by...
Brown Dwarf Planets: Catching Up with Recent Work
Red dwarf stars of the sort we discussed yesterday are all over the galaxy, comprising perhaps as much as 80 percent of the stellar population. Brown dwarfs are different. Data from the Wide-Field Infrared Survey Explorer mission (WISE) indicate that these ‘failed’ stars -- brown dwarfs are too small to sustain hydrogen fusion -- exist in smaller than expected numbers, at least in our stellar neighborhood. WISE could find but one brown dwarf for every six stars (see Brown Dwarfs Sparser than Expected for more on the WISE findings). Image: Brown dwarfs in relation to the Sun and planets. Credit: NASA/WISE mission. As we learn more about the brown dwarf population, we can keep in mind the tantalizing fact that several of these objects have been found with disks of material around them, leading to the speculation that they can form planets in the same way that normal stars can. It’s true that several objects have already been found associated with brown dwarfs, but they tend to be large...
Climate Models for Red Dwarf Planets
Although it's hard for me to believe it, there was a time nine years ago, not long after I began writing these posts, when a daily scramble for topics was fairly common. How the world has changed. These days, between the huge increase in online discussion of interstellar flight and the burgeoning exoplanet scene, the problem becomes to keep from falling too far behind. I'm already a couple of weeks out on interesting work from the University of Washington on one of my favorite topics, red dwarfs and the possibilities for life there. It's time to catch up. What Aomawa Shields has been examining in her recent work is climate in the extreme, the kind of 'snowball Earth' event that, in several periods 600 million years ago and earlier, may have covered the planet in ice from pole to pole. Shields' new paper in Astrobiology goes at the question of climate extremes on planets around M-dwarfs, where conditions are markedly different than around stars like the Sun. It turns out that M-dwarf...
A Blue Planet Nothing Like Our Own
Rayleigh scattering is what happens when light is scattered by particles considerably smaller than the light’s wavelength. Although it can happen in solids and liquids, it’s most obvious when it occurs in our sky, causing its blue color. We’re seeing the short blue wavelengths of sunlight scattered by oxygen and nitrogen molecules in the atmosphere, while red wavelengths are absorbed more strongly, hence less scattering. When you leave the atmosphere and go into space, the Earth appears blue because the oceans absorb red and green wavelengths more than blue ones, and thus we can see the reflected blue color of our sky. But colors from within the atmosphere or beyond it depend on local conditions. The reddish sky shown by the Viking landers in 1977 was the result of iron-rich dust thrown up by the dust storms that are endemic to the planet. We can assume that the color of other planets as seen from space -- think Jupiter or Venus -- is the result of particles within their atmospheres....
Red Dwarfs: Clouds in the Habitable Zone
How close can a planet be to its star and still be habitable? If by ‘habitability’ we mean liquid water on the surface, with whatever consequences that may bring on a particular world, then it’s clear that the answer is partially dependent on clouds. We’ve developed one-dimensional models that can study the effect of clouds in various exoplanet environments, but they’re unable to predict cloud coverage, location or altitude. A new paper now describes a three-dimensional model that can make such calculations about atmospheric circulation, with interesting results. Focusing on planets around M-class dwarf stars, Jun Yang and Dorian Abbot (both of the University of Chicago) and Nicholas Cowan (Northwestern University) are quick to note that red dwarfs like these constitute perhaps 75 percent of all main sequence stars. Current data (based on the work of Courtney Dressing and David Charbonneau) suggest that there is an abundance of Earth-size planets in the habitable zone -- one per star...
Gliese 667C: Three Habitable Zone Planets
Gliese 667C keeps getting more interesting. In the past we’ve looked at studies of this star in a triple system just 22 light years away, work that had identified three planets around the star. As one of these was in the habitable zone, this small red dwarf (about a third of the Sun’s mass) quickly engaged the interest of those thinking in terms of astrobiology. Now we get news that GJ 667C may actually host up to seven planets, with three evidently in the habitable zone. I would say Mikko Tuomi (University of Hertfordshire, UK) is guilty of a bit of understatement. He’s quoted in this ESO news release thusly: “We knew that the star had three planets from previous studies, so we wanted to see whether there were any more. By adding some new observations and revisiting existing data we were able to confirm these three and confidently reveal several more. Finding three low-mass planets in the star’s habitable zone is very exciting!” Exciting indeed -- we’ve never found three...
Exoplanet Targets in Nearby Space
I'm a coffee fanatic. Not only do I drink a lot of the stuff, but I roast my own beans and love fiddling with roasting times and fan speeds, trying to hit exactly the right note. And with a just-brewed carafe of Burundi by my side this morning, it's natural enough that I would be drawn to an exoplanet tool called ESPRESSO. Echelle SPectrograph or Rocky Exoplanet and Stable Spectroscopic Observations is the next generation spectrograph for the European Southern Observatory's Very Large Telescope, which has already played such a huge role in finding distant worlds. Using the HARPS spectrograph, the VLT already holds the record for most exoplanet discoveries from equipment on the ground. Upgraded with ESPRESSO, the VLT should be primed for even more fine-tuned radial velocity measurements. HARPS was designed to get us down to about the 1 m/s level, although its effective precision is considerably tighter. But we're still not in range of Earth-like planets in the habitable zone. The...
A Sunny Day on a ‘Super-Earth’?
When a distant planet moves in front of its star as seen from Earth, the slight drop in starlight is often enough to allow sensitive instruments to make a detection. We call the degree to which the star's light is diminished the 'transit depth,' and even with transiting gas giants, the figure is usually on the order of one percent. What we're getting at is the ratio of the area of the planet to the area of the star behind it. The transit depth of the 'hot Jupiter' HD 189733b is unusually large at three percent. Obviously both a planet's size and the the size of the star come into play. In the case of the super-Earth GJ3470b, the primary star is relatively nearby and is also an M-dwarf, allowing greater transit depth and propelling a series of investigations from the ground. GJ3470b orbits its star at 0.036 AU, completing its orbit in a mere 3.3 days. The new work, led by Akihiko Fukui and Norio Narita (NAOJ), along with Kenji Kuroda (University of Tokyo), looks at the atmosphere of a...
Exoplanet Science Beyond JWST
Thinking as we have been about exoplanet detection, and in particular about taking the next steps beyond the James Webb Space Telescope, I'm intrigued to see what has happened with the WFIRST mission. After all, despite the successes of Kepler and ESA's CoRoT, we live in an era when mission cancellation is not uncommon. The Space Interferometry Mission was canceled outright, while Terrestrial Planet Finder, long touted as the way we would home in on nearby planets like our own, has been put into indefinite suspension. The JWST is on the horizon, but interesting new possibilities are now bubbling up around WFIRST, the Wide Field Infrared Survey Telescope. A mission with a dark energy pedigree could now have serious exoplanet implications. In Exoplanet Capabilities of WFIRST-2.4, Philip Horzempa looks at the latest design to emerge for this mission, one that takes us much deeper into exoplanet country than I had thought the mission could. After all, WFIRST was conceived as a way of...
Deeper Into the Golden Age
The golden age of exoplanets? I've often described our time as such, referring to the fact that we're finding planets at such a fast clip and learning so quickly about the wide range of planetary systems out there, including those with 'hot Jupiters' and 'super-Earths.' But the next step in the discovery process is a bit murkier. If we're learning how exoplanets are distributed -- and even with a hobbled Kepler, we still have a great deal of data still to be analyzed -- we're not yet ready to take the spectra of exoplanet atmospheres on conceivably habitable worlds. This is important, because light scattering off an atmosphere bears the signature of things like water vapor, oxygen, methane and carbon dioxide, the right combination of which could signal life. And just as Kepler is useful at developing a statistical read on the distribution of smaller planets, so we'll want to have a way to measure the frequency of worlds that actually do bear life. It's a problem Lee Billings notes in...
Gravitational Lensing in Proxima Planet Hunt
I normally think about gravitational lensing as a way of finding planets that are a long way from home. That's just the nature of the beast: Lensing as an exoplanet detection tool depends upon a star with planets moving in front of a background object, its mass 'bending' space enough to cause slight changes to the image of the farther star. Monitor those changes closely enough and you may see the signature of a second disruption, flagging the presence of a planet around the closer star. Occultations like these are rare enough and more likely to be found in a crowded starfield, such as looking toward galactic center. It's a remarkable fact that instruments like the Hubble Space Telescope can make measurements down to 0.2 milliarcseconds, a milliarcsecond being (as this Space Telescope Science Institute news release notes) the angular width of a nickel in Honolulu when viewed from New York City. Comparable measurements, within range of the European Southern Observatory's Very Large...
Thoughts on Kepler 62 and Habitability
Because we only have direct images of a tiny number of planets orbiting other stars, we're used to extrapolating as much as we can from our data and plugging in possible scenarios. But as the recent announcement of two 'super-Earths' around Kepler 62 demonstrates, we're coming up hard against the limits of our knowledge. The comments on my recent story on the Kepler find bring up Greg Laughlin's always interesting systemic site and a post he made in early April. Laughlin (UC-Santa Cruz) is worth reading not only for his shrewd analysis but for the sheer brio he brings to the exoplanet hunt. And here he sounds a note of caution: I think we currently have substantially less understanding of the extrasolar planets than is generally assumed. Thousands of planets are known, but there is no strong evidence that any of them bear a particular resemblance to the planets within our own solar system. There's always a tendency, perfectly encapsulated by the discipline of astrobiology, with its...
Water Worlds in the Habitable Zone
"The fault, dear Brutus, is not in our stars, But in ourselves, that we are underlings." Thus Cassius speaking to Brutus in Shakespeare's Julius Caesar, trying to convince him that what happens to us comes not from some malign fate but from our own actions. I'm sure he's right, too, but I admit there are days when I wonder. For the stars seem aligned in such a way that whenever there is a significant news conference about exoplanets, I have a schedule conflict. This is true yet again today, so that I'm writing before the NASA-hosted news briefing and will have to set this up to post automatically after the embargo expires. Here, though, are the main points. We have found Kepler 62f, an interesting world about 1.4 times the size of Earth and most likely rocky. When you add up the other known facts about the planet, the attention builds. Discovered through Kepler data in the constellation Lyra, this world receives about half the heat and radiation that the Earth does, while orbiting...
The Era of Planet Gathering
We've looked at a couple of exoplanet issues this week that bear further comment. The first is that different detection methods can be usefully combined to cover different scenarios. If radial velocity works best with larger planets closer to their star, direct imaging takes us deep into the outer planetary system. We saw yesterday how both imaging and radial velocity could be used to probe subgiant stars. We routinely use RV as a check on transiting planet candidates. And gravitational microlensing can find planets at a wide range of separation from their primary. I think microlensing has plenty to teach us, though I'm sensitive to the criticism voiced in comments here that we're dealing with non-repeating events when we have a microlensing detection. Centauri Dreams reader coolstar has also noted that distance may be a factor, questioning whether some of the resources by way of telescope hardware that we're putting into microlensing studies wouldn't be better employed looking at...
Planetary Systems Around Subgiant Stars
Our exoplanet detection methods have their limits. Radial velocity studies work great in the inner regions of planetary systems, but become more challenging as we move away from the star. Direct imaging is the reverse -- we’re most likely to see a distant planet if it’s both large and well separated from the primary. Clearly we need to take the best data from each available method to characterize a planetary system. But direct images are rare and some stars -- A-class in particular -- are tricky for RV studies because of jitter and other problems. If you want to get in close to an intermediate mass star to look for planets or a debris disk, the way to do it seems to be to study ‘retired’ stars sitting on the subgiant branch of the Hertzsprung-Russell diagram. These are stars that have slowed or stopped fusing hydrogen in their cores. Core contraction raises the star’s temperature enough to fuse hydrogen in a shell surrounding the core and the star begins to swell up toward giant...