Life Around Cooling Stars

Red dwarfs offer fascinating astrobiological speculation, allowing us to ponder whether flare activity or tidal lock could be the game-changer that prevents life from developing around them. We have much to learn on that score, but new work from Rory Barnes (University of Washington) and René Heller (Leibniz Institute for Astrophysics, Potsdam) looks beyond red dwarfs to brown and white dwarfs and their own prospects for life. The prognosis: Poor. Planets around these objects, the researchers say, would have an early history that could remove surface water. The problem is nuclear burning and the lack thereof. Yes, both brown and white dwarfs could support a habitable zone, but what sets them apart from red dwarfs is that they cool slowly and continuously, meaning their habitable zones shrink inward toward the star. Imagine, Barnes and Heller say, a planet that starts out as a Venus-like world beset with a runaway greenhouse effect. Eventually the habitable zone contracts enough to...

read more

On Super-Earths and Alpha Centauri

The discovery of Centauri B b, a small planet with a mass similar to Earth, continues to percolate in the news even if the initial buzz of discovery has worn off. Science News gives the new world a look in a recent article, noting the fact that with an orbital period of 3.236 days, this is not a place even remotely likely for life. Surface temperatures in the range of 1200 degrees Celsius are formidable obstacles, but of course the good news is the potential for other planets around Centauri B and, indeed, around its larger companion. Centauri A may well host interesting worlds, but it's a tough study because it's given to the kind of stellar activity that can more readily mask a planetary signature than the quieter Centauri B. Even so, we can imagine the possibility of two planetary systems in close proximity, a scenario that would surely propel any technological civilization around one to investigate the other. We don't have the driver for spaceflight in our system that an...

read more

Exomoons: A Direct Imaging Possibility

It's good to see that David Kipping's work on exomoons is back in the popular press in the form of A Harvest of New Moons, an article in The Economist. Based at the Harvard-Smithsonian Center for Astrophysics, Kipping's Hunt for Exomoons with Kepler (HEK) culls Kepler data and massages the information, looking for the tug of large moons on transiting exoplanets. The basic method will by now be familiar to Centauri Dreams readers: Dr Kipping's technique relies on the fact that moons do not simply revolve around their host planets; planets also revolve around their moons—or, rather, the two bodies both revolve around their common centre of mass. If a planet is large and its moon small the distinction is trivial. But if the planet is small and the moon is large, it is not. In the case of Earth and its moon, for example, the common centre lies only around 1,700km (1,100 miles) beneath the Earth's surface. Someone looking from afar at the movement of Earth would thus be able to...

read more

Possible Habitable World in a Six-Planet System

At 42 light years from Earth, the star HD 40307 is reasonably within the Sun’s neighborhood, so the news of a potentially habitable planet there catches the eye. HD 40307 is a K-class dwarf, one previously known to be orbited by three super-Earths -- with masses between the Earth and Neptune -- that are too close to the star to support liquid water on the surface. Now we have the discovery, announced in a new paper in Astronomy & Astrophysics, of three more super-Earth candidates found by digging into data from HARPS (the High Accuracy Radial Velocity Planet Searcher) and HIRES (the High Resolution Echelle Spectrograph). Mikko Tuomi (University of Hertfordshire) and team put a new software tool called HARPS-TERRA to work on the archival data that allowed them greater precision in filtering out false positives from stellar activity. Says Tuomi: "We pioneered new data analysis techniques including the use of the wavelength as a filter to reduce the influence of activity on the signal...

read more

Alpha Centauri and the New Astronomy

For much longer than the nine years Centauri Dreams has been in existence, I've been waiting for the announcement of a planetary discovery around Centauri B. And I'm delighted to turn the first announcement on this site over to Lee Billings, one of the most gifted science writers of our time (and author of a highly regarded piece on the Centauri stars called The Long Shot). Lee puts the find into the broader context of exoplanet research as we turn our gaze to the nearest stars, those that would be the first targets of any future interstellar probes. On Thursday I'll follow up with specifics, digging into the discovery paper with more on the planet itself and the reasons why Centauri B was a better target than nearby Centauri A. I'll also be offering my own take on the significance of the find, which I think is considerable. by Lee Billings For much of the past century, astronomy has been consumed by a quest to gaze ever deeper out in space and time, in pursuit of the universe's...

read more

Circumbinary Planet in a Four Star System

Continuing with what promises to be a seriously interesting week in exoplanet studies, I want to home in this morning on PH1, a planet that reminds us how much the public has become involved in ongoing science thanks to the widespread distribution of computer power. As presented at the annual meeting of the Division for Planetary Sciences of the American Astronomical Society in Reno (NV), the finding pairs volunteers working with the crowdsourced Planet Hunters project with an international team of professional astronomers led by Yale University's Meg Schwamb. The volunteers -- Kian Jek of San Francisco, California, and Robert Gagliano of Cottonwood, Arizona -- were the first to spot the telltale lightcurve of a transit, which was then confirmed by astronomers using the Keck instruments at Mauna Kea (Hawaii). What the investigation uncovered was a gas giant about 6.2 times the radius of the Earth, putting it into Neptune-territory. But what really flags the attention is the fact that...

read more

Exoplanet Missions Beyond Kepler

Because it's going to be an interesting week for exoplanet studies (for reasons I'll talk about soon, though not today), I'll lead off with some thoughts on eta-Earth, defined as the fraction of Sun-like stars with a planet like Earth orbiting them. We have a lot to learn about the frequency of terrestrial worlds, and as Philip Horzempa points out in a recent article for The Space Review, the image that's gradually emerging is of fewer 'Earths' than Carl Sagan once estimated when he said in the 1980s that half of all stars could have a planet like our own. Image: Artists' concepts of small exoplanets compared to our own planets Mars and Earth. As Kepler continues to hunt, how can we move beyond its findings to learn more about terrestrial planets around much closer stars? Credit: NASA/JPL-Caltech With Kepler's continuing datastream and improving ground-based instrumentation, we're learning more about planet distribution, but Horzempa notes that even now, estimates of Earth analogs...

read more

Colors of a Living World

Gliese 581d seems more and more to be considered a habitable zone planet, as Siddharth Hegde (Max Planck Institute for Astronomy) and Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics) describe it in a new paper. They're homing in on how to characterize a rocky exoplanet and point to HD 85512b and Gliese 667Cc as well as Gl581d as examples, but they also assume that we'll be seeing more and more habitable zone worlds as the Kepler mission continues its work, so how we learn more about these planets becomes a big issue. In the absence of missions like Terrestrial Planet Finder or ESA's Darwin, which would allow us to analyze an exoplanetary atmosphere for biomarkers, what else can we do to find the places where life exists? Hegde and Kaltenegger look hard at a planet's color to find the answer. Specifically, they're interested in what's known as a color-color diagram, which takes advantage of the fact that an object can be observed at a variety of wavelengths, with a...

read more

Cometary Dust Around ??Pictoris

New findings from the Herschel space observatory demonstrate how effective the infrared telescope can be at teasing out details of distant planetary systems. At issue is the system around Beta Pictoris, a young star (12 million years old) some 63 light years from the Earth. We’re looking at planetary system formation in progress here, with a single gas giant planet and a dusty debris disk that may be the forerunner of a disk much like our own Edgeworth/Kuiper Belt, the collection of icy bodies that orbits outside the orbit of Neptune. Ben de Vries (KU Leuven) is lead author of the paper on the new Herschel data, which examines the composition of dust in the outer regions of the Beta Pictoris disk. The study, reported today in Nature, presents a photometric and spectral analysis of dust particles produced when planetesimals in this region collide. The key player here is olivine, a mineral associated with protoplanetary disk material around newborn stars. The olivine found around Beta...

read more

Lowering Life’s Chances on Super-Earths

Super-Earths are exciting finds. The more of them we discover, the more likely it seems that life is abundant in the cosmos. But new work examining the viscosity and melting temperature of mantle rock is casting a different aura over super-Earths. Rather than being planets much like the Earth but simply more massive -- worlds characterized by thick atmospheres, plate tectonics, volcanic activity and magnetic fields -- they may differ in fundamental ways. With internal pressures tens of times higher than those found in Earth's interior, large viscosities and melting temperatures could have adverse consequences on the planet's habitability. The potential effects extend as far as the core of the planet, which may not even exist. In a presentation at the European Planetary Science Congress on September 26, Vlada Stamenkovic (Massachusetts Institute of Technology) noted that the average super-Earth may in fact be undifferentiated; i.e., it may not have separated into a metallic core and a...

read more

A Circumbinary Planetary System

Among the more interesting items coming out of the XXVIII General Assembly of the International Astronomical Union (IAU) in Beijing is news of a circumbinary system containing two planets. We've seen circumbinary worlds before -- Kepler-16b is a planet orbiting not one but two stars, as are Kepler-34b and Kepler-35b. There was a time that the idea of a planet orbiting two stars, as opposed to orbiting one or the other of two stars in a binary system, seemed unlikely. Now we have a multiple-planet system in exactly this configuration. It's an interesting one, too. Some 4900 light years from Earth in the constellation Cygnus, the two stars orbit each other roughly every 7.5 days. One of the stars is fairly similar to the Sun, though about 15 percent less bright, while the other is an M-dwarf about a third of Sol's size and 175 times fainter. Of the two planets, one -- Kepler-47b -- is three times the diameter of Earth and eight times its mass, orbiting the twin stars every 49 days. The...

read more

A Planet Engulfed by a Red Giant?

Polish astronomer Aleksander Wolszczan (Penn State) is best known as the discoverer of the first confirmed planet outside our Solar System. That was back in the early 1990s, when Wolszczan was working with Dale Frail (NRAO), using observations from the Arecibo dish to demonstrate that the pulsar PSR B1257+12 was orbited by two planets. These are relatively small worlds (3.9 and 4.3 Earth masses respectively), and in an era where new planet candidates number in the thousands, it’s easy to forget how striking Wolszczan’s work appeared at the time, and how it gave impetus to the developing exoplanet hunt. A pulsar planet looks to be an extremely inhospitable place, but learning how planets are distributed among the stars involves studying every conceivable kind of world. Wolszczan’s latest work targets an equally hostile environment, the former habitable zone of a star that has begun expanding into a red giant. The star, BD+48 740, has 11 times the Sun’s radius and is significantly...

read more

Are ‘Waterworlds’ Planets in Transition?

Ponder how our planet got its water. The current view is that objects beyond the 'snow line,' where water ice is available in the protoplanetary disk, were eventually pushed into highly eccentric orbits by their encounters with massive young planets like Jupiter. Eventually some of these water-bearing objects would have impacted the Earth. The same analysis works for exoplanetary systems, but the amount of water delivered to a potentially habitable planet depends, in this scenario, on the presence of giant planets and their orbits. Dorian Abbot (University of Chicago) and colleagues Nicolas Cowan and Fred Ciesla (both at Northwestern University) note the consequences of this theory of water delivery. One is that because low mass stars are thought to have low mass disks, they would have fewer gas giants and would produce less gravitational scattering. In other words, we may find that small planets around M-dwarfs are dry. On the other hand, solar-mass stars and above could easily have...

read more

Barnard’s Star: No Sign of Planets

Barnard's Star has always gotten its share of attention, and deservedly so. It was in 1916 that this M-class dwarf in Ophiuchus was measured by the American astronomer Edward Emerson Barnard, who found its proper motion to be the largest of any star relative to the Sun. That meant the star soon to be named for him was close to us, and unless we're surprised by a hitherto unobserved brown dwarf, Barnard's Star remains the closest star to our Sun after the Alpha Centauri triple system. Stick around long enough and Barnard's Star will close to within 3.75 light years, but even if you make it to 10,000 AD or so, the star will still be too faint to be a naked eye object. Image: Barnard's Star, with proper motion demonstrated, part of an ongoing project to track the star. This image shows motion between 2004 and 2008. Credit: Paul Mortfield & Stefano Cancelli/The Backyard Astronomer. Peter van de Kamp, working at Swarthmore College, had been looking for wobbles in the position of Barnard's...

read more

Habitable Worlds More Like Our Own

Gliese 581 is an utterly maddening star, one that continues to tantalize us with potential habitability. The case of Gl 581g, examined here yesterday, is only the latest wrinkle, but it's in some ways the most frustrating. We're studying planets we cannot actually see, inferring their presence through the tiniest of variations in starlight caused by the planets' gravitational effect on their star. Adjust planetary orbits here in the direction of eccentricity and you can make Gl 581g disappear. Assume circular orbits and you can produce a habitable zone super-Earth. I think we'll still be arguing about this one for some time, but in the interim the question will lose a lot of its force. Remember, the reason we're so excited about Gl 581g is that it would become the closest planet with the possibility of liquid water at the surface (possibly joined by Gl 581d in the same system). But Jean Schneider's Exoplanet.eu catalog shows 777 confirmed planets this morning, and Kepler has pulled...

read more

Gl 581: The Case for Habitable Planets

Not long ago, while making a presentation about possible destinations for an interstellar probe, I called Gl 581d the most likely candidate for habitability yet discovered among nearby stars. I knew the planet was problematic, perhaps too far on the outer edge of the habitable zone to be a realistic candidate, although this seems to depend on a variety of factors including atmospheric modeling. But what I had really been pondering in deciding whether or not to include Gl 581d in the talk was whether its purported sister world, Gl 581g, should be brought into play. Steven Vogt (UC-Santa Cruz) and colleagues were getting ready to distribute their new paper making a further case for a super-Earth in the habitable zone, one that seemed to be ideally placed for liquid water to exist on the surface. Bring that into the discussion? I decided against it, because the controversy over this world continues and Centauri Dreams seems a better venue than a short public talk to get into the...

read more

Proximity Hunt: Exoplanets Around Nearby Stars

Finding new worlds with Kepler is an absorbing occupation, but the one thing missing from most exoplanet news is proximity. While we continue to search for planets around the Alpha Centauri stars, the closest candidate I know about is the gas giant thought to orbit Epsilon Eridani, some 10.5 light years out. If you're looking for potential habitability, you have to extend all the way out to Gliese 581 (almost twice the distance), where planets are plentiful and there is at least the chance (GL 581d) that one skirts the edge of the habitable zone. There are probably many planets closer than 20 light years, but we don't have the tools in space to find them easily. Kepler, you'll recall, studies a field of stars in Cygnus, Lyra and Draco, the goal being to develop a statistical approximation of the prevalence of Earth-sized planets in the galaxy. Looking out along the Orion arm, Kepler is watching stars anywhere from 600 to 3000 light years away. In fact, fewer than 1 percent of the...

read more

Detecting Exoplanet Oceans

Is the discovery of oceans on planets orbiting distant stars within our reach? Finding such an ocean would be of immense interest from an astrobiological perspective because water on the surface is the traditional marker for a habitable zone. Astrobiology Magazine has just written up work by Nicholas Cowan (Northwestern University) and colleagues, who have been looking at the ways we might detect such oceans. The researchers are thinking ahead to a time when we have an actual image of a terrestrial world to look at, even if that image is little more than the 'pale blue dot' Voyager saw in its famous portrait of the Solar System. When we have identified that 'dot,' we can do a lot with it by studying the way its light varies as it orbits its star. Let's assume we deploy a starshade and use it in conjunction with the James Webb Space Telescope to block the light of the star and reveal the faint signature of the planet. A disk tens of meters wide with petal-like extensions, the...

read more

Measuring Non-Transiting Worlds

Although I want to move on this morning to some interesting exoplanet news, I'm not through with fusion propulsion, not by a long shot. I want to respond to some of the questions that came in about the British ZETA experiment, and also discuss some of Rod Hyde's starship ideas as developed at Lawrence Livermore Laboratory in the 1970s. Also on the table is Al Jackson's work with Daniel Whitmire on a modified Bussard ramjet design augmented by lasers. But I need to put all that off for about a week as I wait for some recently requested research materials to arrive, and also because next week I'm taking a short break, about which more on Monday. For today, then, let's talk about an advance in the way we study distant solar systems, for we're finding ever more ingenious ways of teasing out information about exoplanets we can't even see. The latest news comes from the study of Tau Boötis b, a 'hot Jupiter' circling its primary -- a yellow-white dwarf about 20 percent more massive than...

read more

Uses of a Forgotten Cluster

Astronomical surprises can emerge close to home, close in terms of light years and close in terms of time. Take NGC 6774, an open cluster of stars also known as Ruprecht 147 in the direction of Sagittarius. In astronomical terms, it's close enough -- at 800 to 1000 light years -- to be a target for binoculars in the skies of late summer. In chronological terms, the cluster has had a kind of re-birth in our astronomy. John Herschel identified it in 1830, calling it 'a very large straggling space full of loose stars' and including it in the General Catalog of astronomical objects. But NGC 6774 remained little studied, and it took a more intensive look by Jaroslav Ruprecht in the 1960s to give the cluster both a new name and a firmer identity. This loose group of stars had long been thought to be an asterism, a chance alignment of stars that when seen from the Earth gave the impression of being a cluster. Ruprecht realized this was no asterism, and now new work with the MMT telescope in...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives