Proxima b: Obstacles and Opportunities

Meeting people I've written about is always a pleasure at gatherings of the interstellar-minded, and I was delighted to run into Victoria Meadows (University of Washington) in the lobby of our hotel on the final day of the Breakthrough Starshot meetings. Rory Barnes is a colleague of Meadows at UW and recently described the research underway at the Virtual Planetary Laboratory there, at which Meadows is the director. Barnes' essay Opportunities and Obstacles for Life on Proxima b appeared as a guest post on the Pale Red Dot site. I wished I had time to discuss Proxima with Meadows, but our meeting was brief as everyone dispersed for dinner. What Meadows and fellow researchers Giada Arney, Edward Schwieterman and Rodrigo Luger are doing is to produce computer models through which they can study Proxima b's habitability, based on everything from the planet's orbit to the characteristics of not just its host star, but the nearby stars Centauri A and B. Out of this come conclusions about...

read more

A Closer Look at Proxima b

I have much more to say about the Breakthrough Starshot meetings, but last evening I decided to slow the pace a bit. I mentioned in my first report that the discovery of a planet around Proxima Centauri had woven through our San Francisco meetings, creating a bright thread of discussion that continued through all three days. We are also getting papers on Proxima’s planet that inform us more about its potential habitability. In the next couple of days, then, I want to go through some of these before returning soon to the broader issues of Starshot. I also have to admit that I am still transcribing some of my handwritten notes from San Francisco to get everything in synch with my laptop, a process that is taking longer than I intended, thanks to my murky handwriting... In any case, whether Proxima b is habitable or not would surely play a large role in any decisions about using it as Starshot’s initial target. So let’s remember what Guillem Anglada-Escudé and the Pale Red Dot team had...

read more

Proxima Centauri Planet

A planet in the habitable zone around Proxima Centauri? The prospect dazzles the imagination, but then, I’ve been thinking about just that kind of planet for most of my life. Proxima Centauri is, after all, the closest star to our own, about 15000 AU from the primary Alpha Centauri stars (though thought to be moving with that system). A dim red dwarf, Proxima wasn’t discovered until 1915, but it quickly seized the imagination of science fiction writers who pondered what might exist around such a star. Murray Leinster’s story “Proxima Centauri” (1935) is a clanking, thudding tale but it still evokes a bit of the magic of one of the earliest fictional interstellar voyages. Image: This wide-field image shows the Milky Way stretching across the southern sky. The beautiful Carina Nebula (NGC 3372) is seen at the right of the image glowing in red. It is within this spiral arm of our Milky Way that the bright star cluster NGC 3603 resides. At the centre of the image is the constellation of...

read more

Evening Landscape with Exomoons

I often work out my thoughts on the topics we discuss here while taking long walks. I try to get in five miles a day but more often it’s about three. In any case, these long, reflective walks identify me as the neighborhood eccentric, an identity that is confirmed by the things I write about. What’s interesting about that is that so many people have a genuine interest in the stars and how we might get there. Some of the best questions I’ve ever had have been from people whose interest is casual but persistent, and one good question usually leads to another. Hence I wasn’t surprised on yesterday's walk to find myself talking with a neighbor about exomoons and why we study them. After all, we have a Solar System in which moons are commonplace. Isn’t it perfectly obvious that different solar systems would have planets with moons? The answer is yes, but it also follows that things that seem perfectly obvious still have to be confirmed. But let’s unpack it a bit more than that. We’re...

read more

Kepler-80: Analysis of a Compact System

It’s been a week for unusual planetary systems, and I’ll cap it off with Kepler-80, a star about 1100 light years away that features five planets in extraordinarily tight orbits. Such systems are now being referred to as STIPs (Systems with Tightly-spaced Planets), a nod to our apparently imperishable drive to create acronyms. Whatever we call them, though, systems like these make us realize that our own Solar System’s configuration is but one possibility in a sea of other outcomes. Yesterday’s post on ‘warm Jupiters’ is yet another confirmation of the thought. What we have in new work from Mariah MacDonald, Darin Ragozzine (Florida Institute of Technology) and colleagues is an analysis of transit timing variations (TTVs) of the planets around this star, all of which orbit inside 1/10 AU. Here the planets’ years are 1.0, 3.1, 4.6, 7.1 and 9.5 days, respectively, close enough that gravitational perturbations can create slight changes in transit times. Although the innermost planet has...

read more

‘Warm Jupiters’ and Nearby Worlds

Where exactly do ‘hot Jupiters’ come from? I usually see explanations involving planetary migration for Jupiter-class objects with tight orbital periods of 10 days or less, the thinking being that such planets are too close to their host stars to have accumulated a Jovian-style gaseous envelope there. Migration explains their placement, with gas giants forming much further out in their planetary systems and then migrating disruptively inward to become hot Jupiters. Does the scenario work? Consider the hot Jupiter WASP-47b, which has two low-mass planets nearby in its system. WASP-47b is a problem because a migrating gas giant should have produced profound gravitational issues for small worlds in the inner system, likely ejecting them entirely. A new paper from Chelsea Huang and Yanqin Wu (University of Toronto), working with Amaury Triaud (University of Cambridge), tries to explain the dilemma posed by WASP-47b. The answer turns out to be that, according to Kepler data used by the...

read more

A Deeper Look at TRAPPIST-1

Small red stars are drawing increased attention as we continue to discover interesting planets around them. The past two days we've looked at the four worlds around K2-72, a red dwarf about 225 light years out in the constellation Aquarius. That two of these worlds have at least the potential for liquid water on the surface makes the system a prime target for further study. Now we return to another recently discussed system of note, TRAPPIST-1. Designated 2MASS J23062928-0502285, this ultracool dwarf is also in Aquarius, though at forty light years, much the closer target. As with K2-72, we have multiple planets here (three), and also like the K2 discovery, TRAPPIST-1 orbits a star small and dim enough to make planet detection easier -- a transiting world presents a clear signature and the study of planetary atmospheres is possible through what is known as transmission spectroscopy, wherein light from the star that has passed through the planet's atmosphere is analyzed. Today we have...

read more

Ravi Kopparapu: Looking at K2-72

Is the K2-72 system, discussed yesterday as part of a recent exoplanet announcement from Ian Crossfield and colleagues, as intriguing as it looks? Ravi Kopparapu has some thoughts on the matter. Dr. Kopparapu's work on exoplanet habitability is well known to Centauri Dreams readers -- he offered an overview in these pages called How Common Are Potential Habitable Worlds in Our Galaxy?, which ran in 2014. An assistant research scientist at NASA GSFC and the University of Maryland, Dr. Kopparapu began his exoplanet career with James Kasting at Penn State following work on the LIGO collaboration enroute to his PhD from Louisiana State. Analyzing habitable zone possibilities around different kind of stars, as well as modeling and characterizing exoplanet atmospheres, plays a major role in his research interests. I was pleased to receive the following note on the recently announced K2-72 system and want to run his thoughts today given the interest this unusual system has already begun to...

read more

Intriguing System in New Exoplanet Haul

Today’s announcement of the confirmation of over 100 planets using K2 data reminds me of how much has gone into making K2 a success. You’ll recall that K2 emerged when the Kepler spacecraft lost function in two of its four reaction wheels. Three of these were needed for pointing accuracy, but ingenious pointing techniques and software updates have made K2 into a potent project of its own. The latest announcements demonstrate that certain benefits emerged from the changed mission parameters, especially in the ability of K2 to move away from the original field of view (toward Cygnus and Lyra) and focus on targets in the ecliptic plane. What we gain from that change is that working in the ecliptic allows more chances for observation from ground-based observatories in both northern and southern hemispheres as they perform the needed exoplanet follow-up. But there are other factors that make K2 potent. With all targets being chosen by the entire scientific community (not limited to the...

read more

Viewing a Protoplanetary Snowline

A team led by Lucas Cieza (Universidad Diego Portales, Santiago, Chile) has produced the first image directly showing the water snowline in a protoplanetary disk, using the Atacama Large Millimeter/submillimeter Array (ALMA). It's fascinating to actually see a mechanism we've long discussed in these pages when analyzing exoplanetary systems (or for that matter, our own). We have a young star called V883 Orionis to thank for the possibility. It's an FU Orionis star of the kind we recently looked at in FU Orionis: Implications of Sudden Brightening for Planet Formation. And here, too, the implications are rich. FU Orionis stars are young, pre-main sequence objects that can produce extreme changes in magnitude and spectral type. The eponymous FU Orionis itself, 1500 light years away in the constellation Orion, underwent an event in 1936 that took it from a visual magnitude of 16.5 to 9.6. In the case of V883 Orionis, a similar outburst in temperature and luminosity has heated the...

read more

WISE 0855: Probing a Brown Dwarf’s Atmosphere

A brown dwarf as a 'quieter' version of Jupiter? That's more or less the picture offered in a new paper on WISE 0855 from Andrew Skemer (UC-Santa Cruz) and colleagues. Here we're working in the Solar System's close neighborhood -- WISE 0855 is a scant 7.2 light years from Earth -- and we're observing an object that is the coldest known outside of the Solar System. That makes the observational task difficult, but it has yielded rich results in the discovery of clouds of water or water ice. We learn that WISE 0855 is about five times the mass of Jupiter, with a temperature in the range of 250 K (-23 Celsius). This is the nearest known object of planetary mass, but it is too faint to characterize with conventional spectroscopy -- separating light into its component wavelengths -- in the optical or near infrared. But it turns out the object can be studied through thermal emissions from deep in its atmosphere in the range of 5 µm (a range frequently used to study Jupiter's own deep...

read more

Directly Imaged Planet in a Triple Star System

Into the annals of oddball orbits now comes HD 131399Ab, a planet whose wide orbit inside a triple-star system is unlike anything we've yet seen. 320 light years from Earth in the constellation Centaurus, this is a gas giant of about four Jupiter masses that was discovered through direct imaging. The discovery was made with the European Southern Observatory's Very Large Telescope in Chile using the SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) instrument, which exploits differential imaging to screen stellar light from planetary signatures. HD 131399Ab is the first exoplanet discovered by SPHERE, which incorporates adaptive optics, a coronagraph and, with its differential imaging features, distinguishes a planet by the polarization of reflected light. Stars emit unpolarized light -- here the electromagnetic waves oscillate randomly, and in different directions, as explained in this ESO news release. But light reflected from a planetary surface is partially polarized,...

read more

Young Exoplanet Highlights Migration Theories

If our Solar System had a ‘hot Jupiter’ that migrated inward after Mars, Earth and Venus had formed, would any of the terrestrial planets have survived? It’s a question worth pondering given how many hot Jupiters we’ve turned up, raising the question of how these planets form in the first place. One possibility is formation in situ, close to the parent star. But there is also an argument for migration, with planets forming in cooler regions further out in the system and migrating inward as a result of interactions with the protoplanetary disk or other planets. Perhaps the planet known as K2-33b can help us with some of this. It is no more than 11 million years old, in an orbit that creates a transit every 5.4 days. With follow-up observations by the MEarth arrays on Mount Hopkins (AZ) and at the Cerro Tololo Inter-American Observatory in Chile, researchers led by Andrew Mann (University of Texas at Austin) have been able to determine that K2-33b is a Neptune-class world some five...

read more

FU Orionis: Implications of Sudden Brightening for Planet Formation

I would like to thank the many Centauri Dreams readers who contributed to the successful Kickstarter campaign to fund a year's worth of study of KIC 8462852. As I write, there is less than an hour to go, but we have already gone well over the needed $100,000 mark. Congratulations to Tabitha Boyajian, and thanks for all the work she and her colleagues have put into this effort. Now we have a year of observations ahead using the Las Cumbres Observatory Global Telescope Network. The long-term observations will be crucial because we don't know what to expect in terms of sudden dimming in this star's light curve. What a pleasure it is to write for this audience. Readers here have played a large role in pushing this project over the top, and we'll follow the work on KIC 8462852 closely in coming days. Meanwhile, have a look at Penn State's Jason Wright discussing 'Tabby's Star.' [youtube jjh0oK7ZyfM 500 416] Speaking of Unusual Stars… If KIC 8462852 is a star that some believe is...

read more

Structure and Composition of a White Dwarf Planet

Given everything we're learning about planets around other suns, it's frustrating that we have so little information about the chemical composition of the rocky planets we've found thus far. Now we have a new study, announced at the San Diego meeting of the American Astronomical Society, that offers data on a 'planet-like body' whose surface layers are being consumed by the white dwarf SDSSJ1043+0855. Although it's been known for some time that the star has been devouring rocky material orbiting around it, the new work offers a striking view of the accretion process and the composition of what was once a differentiated body. At least, that's the best interpretation of the data taken from the Keck Observatory's HIRES spectrometer (installed on the 10-meter Keck I instrument) and the Hubble Space Telescope. White dwarf stars are the remains of stars like the Sun -- this one was once a few times the Sun's mass -- that have gone through their red giant phase and expelled all their outer...

read more

A Long-Period Circumbinary World

Before getting into today's subject, the discovery of an interesting long-period circumbinary planet, I want to make another pitch for Centauri Dreams readers to support the Kickstarter campaign for Tabby's Star. I've written often about this mysterious star whose light curves are anomalous and demand further study. Trying to find out what's happening around KIC 8462852 means acquiring more data, and the Kickstarter campaign would provide an entire year of observations using the Las Cumbres Observatory Global Telescope Network. We're now down to 48 hours and of the $100,000 needed, about three-fourths has been raised. Coming down the homestretch, the remaining $24,000 should be achievable, but it looks to be a dramatic finish. If you haven't been following the KIC 8462852 story, you can check the archives here, or for a quick overview, see my article A Kickstarter Campaign for KIC 8462852. Whatever you can do to help would be hugely appreciated as we try to learn as much as possible...

read more

Hot Jupiters: The Missing Water Vapor

In late 2015, an international team led by David Sing (University of Exeter, UK) studied ten 'hot Jupiters' to try to figure out why some of these planets have less water in their atmospheres than expected from earlier modeling. Sing and company were working with transmission spectroscopy, possible when a planet transits its star and starlight is filtered by the planet's atmosphere. The team used data from the Hubble instrument as well as the Spitzer Space Telescope, covering wavelengths ranging from the optical into the infrared. A cloudy planet appears larger in visible light than in infrared, the difference in radius at the two wavelengths being used to show whether the atmosphere is cloudy or clear. The result, published in Nature, concluded that there was a correlation between hazy and cloudy atmospheres and scant detection of water. In other words, clouds were simply hiding the expected water vapor, and dry hot Jupiters were ruled out. It's an important finding because dry hot...

read more

In Search of Carbon Planets

The first generation of stars in the universe began to shine in an era when chemical elements like carbon and oxygen were not available. It was the explosion of these early stars in supernovae that began the process of enrichment, with heavier elements fused in their cores now spreading into the cosmos. Lower-mass stars and planetary systems began to appear as heavier elements could form the needed dust grains to build planetary cores. Avi Loeb (Harvard-Smithsonian Center for Astrophysics) and grad student Natalie Mashian have been looking at a particular class of ancient stars called carbon-enhanced metal-poor (CEMP) stars. Here the level of iron is about one hundred-thousandth as high as our Sun, a clear marker that these stars formed before heavy elements were widely distributed. These stars are interesting because despite their lack of iron and other heavy elements in comparison to the Sun, they are rich in carbon, an excess that leads to the possibility of planets forming around...

read more

Kepler-62f: Models for Habitability

So often planets described as ‘potentially habitable’ turn out to be over-rated -- we look deeper into their composition and characteristics only to find that the likelihood of liquid water on the surface is slim. How to make more accurate calls on the matter of habitability? One way may be to combine orbital and atmospheric models, adjusting each with the known parameters of the planet in question. A new study does just that for the interesting world Kepler-62f. About 1200 light years from Earth in the direction of the constellation Lyra, Kepler-62f has a radius 40 percent larger than Earth’s, which puts it well below the 1.6 RE demarcation line that is increasingly thought to define the difference between Earth-like worlds and planets that are more like Neptune. We’re probably looking at a rocky planet here. It’s also a planet that orbits its K-class primary at a distance that could place it in the outer regions of the habitable zone (as defined, again, by the presence of liquid...

read more

Looking for Life Around Red Giant Stars

I suppose the most famous fictional depiction of the Sun as it swells to red giant stage is in H. G. Wells’ The Time Machine, in a passage where the time traveler takes his device by greater and greater jumps into the remote future. This is heady stuff: I moved on a hundred years, and there was the same red sun–a little larger, a little duller–the same dying sea, the same chill air, and the same crowd of earthy crustacea creeping in and out among the green weed and the red rocks. And in the westward sky, I saw a curved pale line like a vast new moon. ‘So I travelled, stopping ever and again, in great strides of a thousand years or more, drawn on by the mystery of the earth’s fate, watching with a strange fascination the sun grow larger and duller in the westward sky, and the life of the old earth ebb away. At last, more than thirty million years hence, the huge red-hot dome of the sun had come to obscure nearly a tenth part of the darkling heavens. Wells would have had no real idea...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives