It's no surprise that the techniques we're using to look for moons around exoplanets should start turning up new planets on their own. We're still looking for that first exomoon, but a team of researchers working with the Hunt for Exomoons with Kepler (HEK) project has found transit variations that have revealed a second planet around a star already known to have one transiting planet. The star is the intriguing KOI-872 (KOI stands for Kepler Object of Interest), the data on which were recently released by the Kepler team and analyzed swiftly by HEK. Kepler's transit methods examine the change in starlight when an exoplanet passes in front of the star being observed. This lightcurve, however, can tell more than a single tale. David Kipping (Harvard-Smithsonian Center for Astrophysics) is head of HEK and second author of the paper on the new work, which was published online today in the journal Science: "For a planet following a strictly Keplerian orbit around its host star, the...
Coffee with Dr. Fermi
I cannot live without good coffee, and that means fresh beans ground right before brewing, and either manual drip or French press extraction. Every morning after publishing Centauri Dreams I make a couple of cups and go out on the deck to rest my eyes and ponder the state of things before hitting the books for background research in the afternoon. Various thoughts about what to write next always come to me, but yesterday I mused about Enrico Fermi, the legendary Italian physicist who, among so much else, left us with a great unanswered question: Where are they? If it’s so easy for the universe to make intelligent species, why is SETI coming up so short? Where are they indeed? The day was gorgeous, the air filled with birdsong, temperatures in the mid-60s and a mild breeze. What better setting to be immersed in, thinking about where life emerges and when? I imagined Fermi sitting across from me with a cup of my Costa Rica Tres Rios in his hand, wondering what he might say about the...
The Proxima Centauri Planet Hunt
Although we haven’t yet found any planets around Proxima Centauri, it would be a tremendous spur to our dreams of future exploration if one turned up in the habitable zone there. That would give us three potential targets within 4.3 light years, with Centauri A and B conceivably the home to interesting worlds of their own. And the issue we started to look at yesterday -- whether Proxima Centauri is actually part of the Alpha Centauri system or merely passing through the neighborhood -- has a bearing on the planet question, not only in terms of how it might affect the two primary stars, but also because it would tell us something about Proxima’s composition. A Gravitationally Bound System Greg Laughlin makes this case in the systemic post I referred to yesterday. It was Laughlin and Jeremy Wertheimer (UCSC) who used data from ESA’s Hipparcos mission to conclude that Proxima was indeed bound to Centauri A and B. Here I want to quote the conclusion of the duo’s paper on the matter,...
Proxima Centauri: Looking at the Nearest Star
Let's start the week with a reminder about Debra Fischer's work on Alpha Centauri, which we talked about last week. There are several ongoing efforts to monitor Centauri A and B for planets and, given the scrutiny the duo have received for the past several years, we should be getting close to learning whether there are rocky worlds in this system or not. Fischer's continuing work at Cerro Tololo involves 20 nights of observing time that her grant money can't cover. Private donations are the key -- please check the Planetary Society's donation page to help if you can. While interest in the Alpha Centauri system is high, the small red dwarf component of that system has been getting relatively little press lately. But I don't want to neglect Proxima Centauri, which as far as we know is the closest star to the Earth (some 4.218 light years away, compared to Centauri A and B's 4.39 light years). From a planet around Centauri B, it would be hard to know that Proxima (also known as Alpha...
The Largest Solar System Yet
The Kepler mission's exoplanet discoveries have been so numerous that an extension of the mission seemed all but inevitable. At the same time, bureaucracies can be unpredictable, which is why it was such a relief to have the Senior Review of Operating Missions weighing in with an extension recommendation, one followed up by NASA with extensions not just for Kepler but also for the Spitzer telescope and the US portion of ESA's Planck mission. Kepler's extension runs through fiscal 2016 (subject to review in 2014), allowing for plenty of time to home in on Earth-sized planets in the habitable zone around stars like our Sun. While Kepler's scheduled mission duration was 3.5 years, the mission was intended to be extendible to 6 years or more and this news is more than satisfying. But of course while we continue to monitor the Kepler work, we're following numerous other exoplanet stories including the European Southern Observatory's observations of the prolific star HD 10180, a Sun-like...
Planets Around an Ancient Star
The idea of 'deep time' exerts an abiding fascination. H.G. Wells took us forward to a remote futurity when his time traveler looked out on a beach dominated by a red and swollen Sun. But of course deep time goes in the other direction as well. I can remember wanting to become a paleontologist when I discovered books about the world of the dinosaurs, my mind reeling from the idea that the world these creatures lived in was as remote as any distant star. Paleontology was a grade-school ambition I never followed up on, but the Triassic and Jurassic eras still have a hold on my imagination. In a SETI context, deep time presents challenges galore. Charles Lineweaver's work offers up the prospect that the average Earth-like planet in our galactic neighborhood may well be far older than our own -- Lineweaver calculates something like an average of 1.8 billion years older. Would a civilization around such a star, if one could survive without destroying itself for so long, have anything it...
ESO: Habitable Red Dwarf Planets Abundant
Red dwarfs are all over the news thanks to an announcement by the European Southern Observatory. Results from a new HARPS study show that tens of billions of planets not much larger than Earth are to be expected in the habitable zones around this class of star. The finding reinforces the growing interest in M-class stars and becomes especially interesting when you realize that faint red stars like this make up as much as 80 percent of the stars in the Milky Way. That leaves plenty of room for astrobiology, depending on factors we need to discuss below. Do we suddenly have a close destination for a potential interstellar probe? Well, Barnard’s Star has always been in the running for an early mission because of its relative proximity to us at 5.94 light years. But we still have no word on planets there (despite a much publicized but soon discredited set of observations from a 1969 paper). Proxima Centauri is available at 4.2 light years, but we have yet to learn whether it has planets....
Looking Into Kepler’s Latest
I've held off a bit on the latest Kepler data release because I wanted some time to ponder what we're looking at. The list of candidate planets here is based on data from the first sixteen months of the mission, and at first blush it seems encouraging in terms of our search for Earth-class planets. But dig deeper and you realize how much we still have to learn. Not all the trends point to the near ubiquity of rocky worlds in the habitable zone that some have hoped for. You might remember, for example, Carl Sagan famously saying (on 'Cosmos') that one out of every four stars may have planets, with two in each such system likely to be in the habitable zone. Kepler's Candidates and Some Qualifications I remember being suitably agog at that statement, but we've learned more since. John Rehling, writing an essay for SpaceDaily, didn't miss the Sagan quote and uses it to contrast with his own analysis of the new Kepler material showing that Earth-like planets may be considerably harder to...
A New Take on Planet Formation
Figuring out how planets form is an old occupation, with the basic ideas of planetary accretion going back several centuries, though tuned up, to be sure, in the 1970s and tweaked ever since. In a disk of gas and dust orbiting a young central star, dust grains begin to clump together, eventually forming planetesimals. Accretion models assume that these small planetesimals bang into each other and gradually grow. The assumption is that in the inner system at least temperatures are hot and the era of planet formation occurs well after the central star has formed. Image: Artist's conception of a protoplanetary disk. Credit: NASA/JPL-Caltech/T. Pyle. Adjust for distance from the star and subsequent planetary migration in the gas/dust disk and you can come up with a system more or less like ours, with rocky inner worlds and gas giants out beyond the snow line, the latter being the distance from the star where it is cool enough for volatile icy compounds to remain solid. But Anne...
Finding Life Through Polarized Light
One of these days we're going to have a new generation of telescopes, some in space and some on the Earth, that can analyze the atmosphere of a terrestrial world around another star. It's not enough to find individual gases like oxygen and ozone, carbon dioxide or methane. Any of these can occur naturally without ramifications for life. But finding all of these gases in the same atmosphere is telling, because without life to replenish them, some would disappear. Getting the data is going to be hard, which is why new work using the European Southern Observatory's Very Large Telescope is so interesting. The work involves 'Earthshine,' the reflection of sunlight off the Earth that is in turn reflected off the surface of the Moon. It's faint, to be sure, but Earthshine is visible in a crescent Moon when the light of the entire lunar disc is visible although only the crescent is brightly lit. Michael Sterzik (ESO) and team have used Earthshine to analyze our own planet's biosignature, and...
M-Dwarfs: A New and Wider Habitable Zone
I want to work a new paper on red dwarf habitability in here because it fits in so well with yesterday's discussion of the super-Earth GJ1214b. The latter orbits an M-dwarf in Ophiuchus that yields a hefty 1.4 percent transit depth, meaning scientists have a strong lightcurve to work with as they examine this potential 'waterworld.' In transit terms, red dwarfs, much smaller and cooler than the Sun, are compelling exoplanet hosts because any habitable worlds around them would orbit close to their star, making transits frequent. When I first wrote about red dwarfs and habitability in my Centauri Dreams book, it was in connection with the possibilities around Proxima Centauri, but of course we can extend the discussion to M-dwarfs anywhere, this being the most common type of star in the galaxy (leaving brown dwarfs out of the equation until we have a better idea of their prevalence). Manoj Joshi and Robert Haberle had published a paper in 1997 that described their simulations for...
A Waterworld Around GJ1214
I love the way Zachory Berta (Harvard-Smithsonian Center for Astrophysics) describes his studies of the transiting super-Earth GJ1214b. Referring to his team's analysis of the planet's atmosphere, Berta says "We're using Hubble to measure the infrared color of sunset on this world." And indeed they have done just this, discovering a spectrum that is featureless over a wide range of wavelengths, allowing them to deduce that the planet's atmosphere is thick and steamy. The conclusion most consistent with the data is a dense atmosphere of water vapor. Discovered in 2009 by the MEarth project, GJ1214b has a radius 2.7 times Earth's and a mass 6.5 times that of our planet. It's proven to be a great catch, because its host star, an M-dwarf in the constellation Ophiuchus, offers up a large 1.4 percent transit depth -- this refers to the fractional change in brightness as the planet transits its star. Transiting gas giants, for example, usually have transit depths somewhere around 1 percent,...
Alpha Centauri B: A Close Look at the Habitable Zone
The dreams of Alpha Centauri I used to have as a boy all focused on visual effects. After all, the distance between Centauri A and B ranges from 11.4 to 36.0 AU. What would it be like to have a second star in our Solar System, one that occasionally closed to a little more than Saturn’s distance from the Sun? What would a day be like with two stars, and even more, what would night be like with a star that close lighting up the landscape? I also wondered about how much effect a second star would have on the planets in our system, curious as I was about gravitational effects and even the possible repercussions for weather and seasonal change. Image: The Alpha Centauri star system and other objects near it in the sky. Image copyright Akira Fujii / David Malin Images. You can imagine, then, that Duncan Forgan’s new paper hit close to home. Forgan (University of Edinburgh) has taken discussions of habitability around Centauri B to a new level by analyzing the effect of Centauri A on...
‘Super-Earth’ in a Triple Star System
GJ 667C is an M-class dwarf, part of a triple star system some 22 light years from Earth. Hearing rumors that a 'super-Earth' -- and one in the habitable zone to boot -- has been detected around a nearby triple star system might cause the pulse to quicken, but this is not Alpha Centauri, about which we continue to await news from the three teams studying the prospect of planets there. Nonetheless, GJ 667C is fascinating in its own right, the M-dwarf being accompanied by a pair of orange K-class stars much lower in metal content than the Sun. The super-Earth that orbits the M-dwarf raises questions about theories of planet formation. Thus Steven Vogt (UC Santa Cruz), who puts the find into context, noting that heavy elements like iron, carbon and silicon are considered the building blocks of terrestrial planets: "This was expected to be a rather unlikely star to host planets. Yet there they are, around a very nearby, metal-poor example of the most common type of star in our galaxy....
Cloud Cover’s Role in Exoplanet Studies
I confess it had never occurred to me to consider cloud cover on exoplanets in quite the same light that a new study does. But two Spanish astronomers from the Astrophysical Institute of the Canary Islands (IAC) are taking a look at how clouds operate over different kinds of surfaces, in the process figuring out what our Earth would have looked like from space in different eras. It’s an interesting thought: Given the movement of Earth’s continents in the past 500 million years, what would cloud patterns have been like over land and sea as landforms changed? The researchers chose several times to study, from 90, 230, 340 to 500 million years ago, pondering how changes in light reflected from the Sun would have operated here and, by extension, how they might operate on distant exoplanets. We’ll need to keep these things in mind when we get the capability of studying the atmospheres of terrestrial planets around other stars. And it turns out that, according to the researchers, cloud...
New Multiple Planet Systems Verified
Confirming Kepler's planet candidates is a crucial part of the process, because no matter how tantalizing a candidate appears to be, its existence needs to be verified. We have more than 60 confirmed Kepler planets and over 2300 candidates, many of which will eventually get confirmed, but it's interesting to see that the mission's latest announcements relate to multiple planet systems and how their presence can itself speed up the verification process. In today's focus are the eleven new planetary systems just announced, 26 confirmed planets in all, which actually triples the number of stars known to have more than one transiting planet. One of the systems, Kepler-33, has been demonstrated to have five planets. We also have five systems (Kepler-25, Kepler-27, Kepler-30, Kepler-31 and Kepler-33) showing a 1:2 orbital resonance -- the outer planet orbits the star once for every two orbits of the inner planet -- and four systems with a 2:3 resonance, with the outer planet orbiting twice...
Exoplanetary Ring Systems and Their Uses
What to say about an extrasolar ring system that has already had its four distinct rings named? Rochester, Sutherland, Campanas and Tololo are the Earth-bound sites where the unusual system was first detected and analyzed, and the international team of researchers involved thought them suitable monickers for the four rings thus far detected. The light curve of the young, Sun-like star they’ve been studying in the Scorpius-Centaurus association -- a region of massive star formation -- shows what appears to be a dust ring system orbiting a smaller companion occulting the star. The data here come from SuperWASP (Wide Angle Search for Planets) and the All Sky Automated Survey (ASAS) project. The star in question is 1SWASP J140747.93-394542.6, which displays a complex eclipse event with, at some points, 95 percent of the light from the star being blocked by dust. Similar in mass to the Sun, the star is only about 16 million years old, and lies about 420 light years away from the Solar...
Circumbinary Planets: A New Class of Systems?
Last week's meeting of the American Astronomical Society is still much in the news, and I want to cover several more stories from the Austin conclave this week, starting with yet another circumbinary planetary system, in which a planet orbits two stars. Not long ago we looked at Kepler-16b, a circumbinary planet orbiting two stars in this mode -- as opposed to a binary system where planets orbit one or the other of the two stars. Kepler-16b was interesting but perhaps unusual given the perceived difficulties in finding stable orbits around close binaries. But things are happening quickly on the exoplanet front. Needing more information about the prevalence of this kind of planet and the range of orbital and physical properties involved in such systems, we now get news of not one but two more, Kepler-34b and Kepler-35b. Note the nomenclature: We could as easily call these Kepler-34(AB)b and Kepler-35(AB)b. We confront the real possibility that 'two sun' systems are not necessarily...
New Exomoon Project Will Use Kepler Data
Exomoons are drawing more interest all the time. It may seem fantastic that we should be able to find moons around planets circling other stars, but the methods are under active investigation and may well yield results soon. Now David Kipping (Harvard-Smithsonian Center for Astrophysics) and colleagues have formed a new project called HEK -- the Hunt for Exomoons with Kepler. We thus move into fertile hunting ground, for there has never been a systematic search for exomoons despite the work of ground-breaking researchers like Kipping, Gaspar Bakos (Princeton) and Jean Schneider (Paris Observatory). It’s definitely time for HEK as Kepler’s exoplanet candidate list grows. Kepler, of course, works with transit methods, noting the dip in starlight as an exoplanet passes in front of the star under observation. HEK will use Kepler photometry to look for perturbations in the motion of the host planet that could flag the presence of a moon. Variations in transit timing (TTV) and duration...
Three Exoplanets Smaller than Earth
It’s always gratifying to note the contributions of amateur astronomers to front-line science. In the case of three small planets discovered around the Kepler star KOI-961, the kudos go to Kevin Apps, now a co-author of a paper on the new work. It was Apps who put postdoc Philip Muirhead (Caltech) on to the idea that KOI-961, a red dwarf, was quite similar to another red dwarf, the well-characterized Barnard’s Star, some six light years away in the constellation Ophiuchus. It was a useful idea, because we do have accurate estimates of Barnard Star’s size, and the size of the star becomes a key factor in exoplanet detections. For the depth of a light curve -- the dimming of the star over time due to the passage of planets across its surface as seen from Kepler -- reveals the size of the respective planets. Researchers from Vanderbilt University aided the Caltech team in determining KOI-961’s size, a difficult call because while Kepler offers data about a star’s diameter, that data is...