Voyager 2: Back in Two-Way Communication

It's reassuring to hear that we're in two-way contact once again with Voyager 2. Since last March, controllers have been limited to receiving X-band (8 to 12 GHz) downlink data, with no capability to uplink commands to the craft via S-band (2 to 4 GHz). This has been a problem unique to Voyager 2 thanks to its trajectory. The Deep Space Network's three radio antenna facilities -- Canberra, Australia; Goldstone, California and Madrid, Spain -- are positioned so that at least one facility is available for communications with our far-flung space probes. While Voyager 1 can talk to us via the two northern hemisphere DSN stations, Voyager 2's close flyby of Neptune's large moon Triton in 1989 bent its course well south of the ecliptic. 18.8 billion kilometers from Earth, Voyager 2 can only line up on Canberra, and the antenna called Deep Space Station 43 (DSS43) has been the only southern hemisphere dish with a transmitter capable of reaching the craft at the right frequency to send...

read more

Solaris: To the Sun’s High Latitudes

I can think of more than one way to get a good look at the Sun's polar regions. After all, we've done it before, through the Ulysses spacecraft, which passed over the Sun's north and south poles in 1994-1995. A gravity assist at Jupiter was the key to the mission, allowing Ulysses to arc out of the ecliptic and inward to the Sun. But Ulysses lacked the kind of remote-sensing instruments we'd like to use to compile an extensive dataset on the polar magnetic field and, as Don Hassler (SwRI) adds, "the surface/sub-surface flows" we might find in the polar regions. It's good to see a mission designed for that purpose. For Hassler is principal investigator on a concept that has just been approved for further study by NASA, with the haunting name Solaris. I say 'haunting' because it's hard for this Stanislaw Lem reader to forget the novel of the same name, published in 1961, that explores the implications of a vast intelligence on a planet far from Earth. I realize this has been done as a...

read more

PUNCH: Imaging the Solar Wind

Get ready for the Polarimeter to UNify the Corona and Heliosphere (PUNCH) mission, which will begin popping up even as Centauri Dreams continues to consider heliophysics in relation to proposed missions far beyond the Solar System. We've seen recently that the Applied Physics Laboratory at Johns Hopkins is looking, under the leadership of Ralph McNutt, at a mission to 1000 AU, using an Oberth maneuver at the Sun as a possible way to reach such distances with a flight time of 50 years (see The 1000 AU Target). Thus do heliophysics and deep space intersect in unexpected ways, and not just at APL but JPL and elsewhere as we look toward the upcoming decadal survey. As for PUNCH, it's all about the solar wind and the connection between it and the Sun's corona, says PUNCH principal investigator Craig DeForest of Southwest Research Institute's Space Science and Engineering Division: "For over 50 years, we've studied the solar corona by remote imaging and the solar wind by direct sampling....

read more

The 1000 AU Target

One reason I wanted to run yesterday's article about the Opher et al. paper on the heliosphere, aside from its innate scientific interest (and it is a very solid, well crafted piece of work) is to illustrate how much we still have to learn about the balloon-like bubble carved out by the solar wind. The entire Solar System fits within it easily, but we observe only from inside and have little knowledge of its structure. None of the paper's authors would argue that we have the definitive answer on the shape of the heliosphere. That will take a good deal more data, as the paper notes: Future remote-sensing and in situ measurements will be able to test the reality of a rounder heliosphere. In Fig. 6, we show our prediction for the interstellar magnetic field ahead of the heliosphere at V2. In addition, future missions such as the Interstellar Mapping and Acceleration Probe will return ENA [energetic neutral atom] maps at higher energies than present missions and so will be able to...

read more

A New Shape for the Heliosphere

We have all too little information about the heliosphere, the only data from beyond it being what we have collected from the two Voyagers. Altogether, only five spacecraft -- Pioneer 10 and 11, the Voyagers and New Horizons -- have escaped the gravity of the Sun enroute to interstellar space. To understand how the heliosphere operates, and the interactions between the solar wind of charged particles and magnetic fields with what lies beyond, we’d really like to be able to look back at our system in its entirety. The Interstellar Probe concept being pondered at Johns Hopkins Applied Physics Laboratory and elsewhere is one possible way to do this. I’ll have more to say about Interstellar Probe in coming days, though I do want to give a nod to its history, which can be traced as far back as 1958 and a report from the National Academy of Sciences. APL’s Ralph McNutt has been studying interstellar concepts for decades, and was a major source as I worked on my original Centauri Dreams...

read more

An Unusual Look at Mercury

Centauri Dreams rarely looks at Mercury, the operative method being generally to focus on the outer Solar System and beyond. But a new paper out of the Planetary Science Institute in Tucson (AZ) raises the eyebrows in suggesting that parts of Mercury may once have been able to shelter prebiotic chemistry and perhaps, according to the authors, even primitive life forms. Such a finding might thus extend our ideas of ‘habitable zones’ much closer to parent stars than previously assumed. It seems a long shot, given surface temperatures reaching 430? in the daytime and -180? at night, but the PSI work turns up interesting possibilities in some subsurface regions of Mercury. The heart of this research is found in the datasets returned by the MESSENGER (MErcury Surface Space ENvironment GEochemistry and Ranging) spacecraft. The Mercury orbiter identified numerous volatile-bearing surfaces on Mercury, with high abundances of sulfur, chlorine and potassium, and polar ice in permanently...

read more

WFIRST: Ready for Construction

With the James Webb Space Telescope now declared 'a fully assembled observatory' by NASA, environmental tests loom for the instrument, which is now slated for launch in March of 2021. Within that context, we need to place WFIRST (Wide-Field Infrared Space Telescope), whose development was delayed for several years because of cost overruns on JWST. Recall that WFIRST was the top priority for a flagship mission in the last astrophysics Decadal Survey. The good news is that NASA has just announced that WFIRST has passed what it is calling 'a critical programmatic and technical milestone,' which opens the path to hardware development and testing. With a viewing area 100 times larger than the Hubble instrument, WFIRST will be able to investigate dark energy and dark matter while at the same time examining exoplanets by using microlensing techniques applied to the inner Milky Way. Its exoplanet capabilities could be significantly extended if additional budgeting for a coronagraph -- which...

read more

Voyager and the Deep Space Network Upgrade

The fault protection routines programmed into Voyager 1 and 2 were designed to protect the spacecraft in the event of unforeseen circumstances. Such an event occurred in late January, when a rotation maneuver planned to calibrate Voyager 2's onboard magnetic field instrument failed to occur because an unexpected delay in its execution left two systems consuming high levels of power (in Voyager terms) at the same time, overdrawing the available power supply. We looked at this event not long after it happened, and noted that within a couple of days, the Voyager team was able to turn off one of the systems and turn the science instruments back on. Normal operations aboard Voyager 2 were announced on March 3, with five operating science instruments that had been turned off once again returning their data. Such autonomous operation is reassuring because Voyager 2 is now going to lose the ability to receive commands from Earth, owing to upgrades to the Deep Space Network in Australia. This...

read more

How NASA Approaches Deep Space Missions

Centauri Dreams reader Charley Howard recently wrote to ask about how NASA goes about setting its mission priorities and analyzing mission concepts like potential orbiter missions to the ice giants. It's such a good question that I floated it past Ashley Baldwin, who is immersed in the evolution of deep space missions and moves easily within the NASA structure to extract relevant information. Dr. Baldwin had recently commented on ice giant mission analysis by the Outer Planets Advisory Group. But what is this group, and where does it fit within the NASA hierarchy? Here is Ashley's explanation of this along with links to excellent sources of information on the various mission concepts under analysis for various targets, and a bit of trenchant commentary. By Ashley Baldwin Each of the relevant NASA advisory groups has its own page on the NASA site with archives stuffed full of great presentations. The most germane to our discussion here is the Outer Planets Assessment Group (OPAG). My...

read more

A Heliophysics Gateway to Deep Space

Are missions to the Sun particularly relevant to our interstellar ambitions? At the current state of our technology, the answer is yes. Consider Solar Cruiser, which is the planned NASA mission using a solar sail that could maintain non-Keplerian orbits, allowing it to investigate the Sun's high latitudes. And throw in the European Space Agency-led Solar Orbiter, which left our planet early Monday (UTC) on a United Launch Alliance Atlas V rocket, lifting off from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Herewith the gorgeous arc of ascent: Image: Launch of the ESA/NASA Solar Orbiter mission to study the Sun from Cape Canaveral Air Force Station in Florida on Feb. 9, 2020. Credit: Jared Frankle. Missions to the Sun allow us to explore conditions close to a star and, significantly, deep in its gravity well, where interesting things can happen. When we discuss one way of propelling a sail beyond the heliosphere, the irony is that an Oberth maneuver, which takes...

read more

Voyager 2 Recovers

When one of our Voyagers experiences a blip of any kind, it gets my attention. It's not like we have any other options outside the heliosphere right now. Both Voyagers have fault protection software that allows the spacecraft to protect themselves if problematic situations occur. And a problem did indeed surface aboard Voyager 2 on January 25, when there seems to have been a delay in the onboard execution of commands for a scheduled maneuver. The latter was a 360 degree rotation to be executed as a way of calibrating the craft's magnetic field instrument, and the result of the delay was that two systems that consume power at relatively high levels were operating at the same time. Not a good idea. Right now, with power dwindling inexorably, the Voyager missions are both dominated by power management. Hence the shutdown of Voyager 2's science instruments to make up for the power deficit, as reported by the Voyager team on Twitter: Here's the skinny: My twin went to do a roll to...

read more

Hayabusa2: Commencing the Return

We’re seeing our final images of asteroid Ryugu as the Hayabusa2 spacecraft leaves its orbit some 300 million kilometers from Earth. The Japanese Aerospace Exploration Agency (JAXA) intends to keep taking images of the receding Ryugu for several more days, after which it will be necessary to perform an attitude control maneuver to orient the craft for proper operation of its ion engines. An ion engine test period will culminate in cruise operations on December 3 to return the spacecraft to Earth. Image: Asteroid Ryugu captured with the Optical Navigation Camera - Telescopic (ONC-T) immediately after departure. Image time is November 13 10:15 JST (onboard time), 2019. Credit: JAXA, Chiba Institute of Technology, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Meiji University, University of Aizu, AIST. Happily, we are asked to join in JAXA’s ‘Goodbye Ryugu’ campaign by sending a #Sayonara_Ryugu tweet (https://twitter.com/haya2e_jaxa), although the agency...

read more

Latest Findings from Voyager 2

It's heartening to consider that the two Voyager spacecraft, though built for a 4 ½ year mission, have continued to function ten times longer than that. This fact, and data from other missions, will help us get a handle on longevity in spacecraft systems as we contemplate pushing out beyond the heliosphere with a spacecraft specifically designed for the job. Mission longevity is mysterious for it often seems to surprise even the designers, who would like to have a more concrete sense of how to ensure operations continue for decades. Voyager 2 broke Pioneer 6's record of 12,758 days of operation way back in 2012, but we can also consider spacecraft like Landsat 5, launched in 1984 and carrying two instruments, the Multispectral Scanner System (MSS) and the Thematic Mapper (TM). Managed by the U.S. Geological Survey (USGS), Landsat 5 completed over 150,000 Earth orbits and sent back more than 2.5 million images of Earth's surface, with operations lasting almost three decades. Design...

read more

Voyager: Pressure at the Edge of the System

One of these days we'll have a spacecraft on a dedicated mission into the interstellar medium, carrying an instrument package explicitly designed to study what lies beyond the heliosphere. For now, of course, we rely on the Voyagers, both of which move through this realm, with Voyager 1 having exited the heliosphere in August of 2012 and Voyager 2, on a much different trajectory, making the crossing in late 2018. Data from both spacecraft are filling in our knowledge of the heliosheath, where the solar wind is roiled by the interstellar medium. A new study of this transitional region has just appeared, led by Jamie Rankin (Princeton University), using comparative data from the time when Voyager 2 was still in the heliosheath and Voyager 1 had already moved into interstellar space. Leaving the heliosheath, the pressure of the Sun's solar wind is affected by particles from other stars, and the magnetic influence of our star effectively ends. What the scientists found is that the...

read more

Could We Send a Probe to C/2019 Q4 (Borisov)?

The arrival of an apparent interstellar visitor, the comet now designated C/2019 Q4 (Borisov), invariably calls to mind the all too swift passage of 'Oumuamua through our skies in 2017. Detected 40 days after perihelion, the object was headed out of the Solar system when discovered, making observation time limited and the prospects of visiting it with a probe problematic. Nonetheless, Andreas Hein and colleagues at the Initiative for Interstellar Studies put out a mission concept we reviewed in these pages. To refresh your memory, see Project Lyra: Sending a Spacecraft to 1I/'Oumuamua (formerly A/2017 U1), the Interstellar Asteroid). Image: C/2019 Q4 (Borisov), in the center of the image. Note what appears to be a short tail extending from the coma. Credit: Gennady Borisov. The mission the authors described stretched the boundaries of the technologically possible, not to mention the resources that would be available for such an attempt. But now we have a second interstellar wanderer,...

read more

Heliophysics with Interstellar Implications

You would think that heading toward the Sun, rather than away from it, would not necessarily fall under Centauri Dreams’ purview, but missions like the Parker Solar Probe have reminded us that extreme environments are ideal testing grounds for future missions. Build a heat shield that can take you to within 10 solar radii of our star and you’re also exploring possibilities in ‘sundiver’ missions that all but brush the Sun in a tight gravity assist. Or consider the two proposals NASA has just selected in the area of small satellite technologies, which grow directly out of its heliophysics program. Here, the study of the Sun’s interactions with the Solar System, and the consideration of Sun, planets and heliosphere as a deeply interconnected system, takes pride of place. Let’s start with a mission called SETH -- Science-Enabling Technologies for Heliophysics. One of its two technology demonstrators, called the HELio Energetic Neutral Atom (HELENA) detector, involves solar energetic...

read more

Lunar Landing Backup: Apollo’s Abort Guidance System

Al Jackson shares more memories of Apollo this morning in his account of a little known spacecraft component, the Abort Guidance System. A NASA historical document on computers aboard the Apollo spacecraft refers to the Abort Guidance System as "...probably the most obscure computing machine in the manned spaceflight program to date." The AGS was a backup computer system offering the capability of aborting the mission if the Lunar Module's primary guidance system failed during descent to the lunar surface, ascent or rendezvous. The very invisibility of the system is in its way a tribute to the primary guidance and navigation systems, for while the AGS could abort a landing, it was never needed for that purpose. But NASA's abort policy made its presence mandatory -- an abort would be ordered if one additional system failure could potentially cause the loss of the crew. Thus a loss of either the primary guidance and navigation control system or the AGS would have caused an abort....

read more

Keeping Voyager Alive

One of the many legacies of the Voyager spacecraft is the Interstellar Mapping and Acceleration Probe (IMAP). Scheduled for a 2024 launch, IMAP has as part of its charter the investigation of the solar wind's interactions with the heliosphere, drawing on data from an area into which only the Voyagers have thus far ventured. Let me hasten to add that IMAP will stay much closer to home, orbiting the Sun-Earth L1 Lagrange point, but like the Interstellar Boundary Explorer (IBEX), it will help us learn more about a region physically reachable only by long-duration craft. The fact that we're still talking about Voyager as an ongoing mission is the story here. Launched in 1977, the doughty probes have kept surprising us ever since. In terms of their longevity, I noted in 2017 that when Voyager 1's thrusters had begun to lose their potency (they're needed to keep the spacecraft's antenna pointed at Earth to return data), controllers were able to fire a set of backup thrusters that hadn't...

read more

Apollo’s Lunar Module Simulator

I'm staying in Apollo mode this morning because after Friday's piece about the Lunar Module Simulator, Al Jackson forwarded two further anecdotes about his work on it that mesh with the discussion. Al also reports that those interested in learning more about the LMS can go to the official Lunar Module familiarization manual, which is available here. I've also inserted some background on the LMS, with my comments in italics. by Al Jackson A couple of funny anecdotes about the Lunar Module Simulator. It took some effort to get the LMS up and running … we could do a little simulation when it was first installed, but I had a very irregular schedule. I always worked at the LMS crew training 8 am to Noon, but for most of 1967, because the crew did not train after 5 pm, I came many the night with the Singer engineers to test the LMS, sometimes 6 to midnight, sometimes midnight to 7 am, and yeah I had to stick around for the 8 am to noon shift, and then go home and sleep. There was a...

read more

Reminiscences of Apollo

While compiling materials for a book on Apollo 11, Neil McAleer accumulated a number of historical items that he passed along to me (thanks, Neil!), and I'm thinking that with the 50th anniversary of the first landing on the Moon approaching, now is the right time to publish several of these. Centauri Dreams has always focused on deep space and interstellar issues, but Apollo still carries the fire, representative of all human exploration into territories unknown. In the piece that follows, Neil talked to Al Jackson, a well known figure on this site, who as astronaut trainer on the Lunar Module Simulator (LMS) worked with Neil Armstrong and Buzz Aldrin before Apollo 11 launched, along with other Apollo crews. McAleer finalized and synthesized the text, which I'll follow with a piece Al wrote for Centauri Dreams back in 2012, as it fits with his reminiscences related to McAleer. I've also folded in some new material that Al sent me this morning. by Al Jackson and Neil McAleer In the...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives