New Horizons Launch Aborted

Centauri Dreams is not conceived as a streaming news site, but the NASA servers are slammed, so I'll update as needed until we get New Horizons off the ground. Update times are GMT (subtract 5 for EST). Update: 2022 Launch abort, with at least a 24-hour turnaround. Launch now scheduled for tomorrow at 1816 GMT (1316 EST). 2019: Countdown resumes at T-4 minutes. 2001: Launch now re-scheduled for 2023 GMT (1523 EST). We're nearing the outer edge of today's launch envelope. Ground-level winds are now problematic. 1950: Upper level winds remain a concern although launch is still set for 2005 GMT (1505 EST). No technical issues with the Atlas V; the problem is solely meteorological at this point. 1946: Launch time now set for 2005 GMT (1505 EST), due to a problem with the Deep Space Network that has now been resolved. An earlier delay had been caused by upper level winds. ----------- All eyes are on Launch Complex 41 this morning, and on the clock. The New Horizons launch is scheduled for...

read more

Stardust Update

The return capsule from the Stardust probe landed successfully in the Utah desert at 1012 GMT. More on Monday; for now, this BBC story contains the details, and provides video of the landing. From the story: "'I'm very confident we will have samples in there that are the first returned from beyond the Moon,' former Stardust project manager, Ken Atkins, told the BBC News website." Well done!

read more

Stardust Just Hours from Earth

The Stardust spacecraft crossed the Moon's orbit at 1730 GMT on Saturday and will close the distance to Earth in sixteen and a half hours (an indication of how fast the vehicle is moving). The craft performed a final burn for course adjustment before passing the Moon's orbit. Approaching the Earth, it will deploy its return capsule for a scheduled landing at the Utah Test and Training Range on Sunday (the primary spacecraft will enter a Solar orbit after release). The capsule is scheduled to enter Earth's atmosphere over northern California at an altitude of 125 kilometers, traveling some 46,440 kilometers per hour (28,860 miles per hour). This is the fastest return of any man-made object on record. Landing is now expected at 1012 GMT on Sunday, after which the capsule will be taken to the U.S. Army Dugway Proving Ground (Utah); the collector grid (containing cometary and interstellar samples) will then be moved to NASA's Johnson Space Center in Houston. You can follow events at the...

read more

Stardust@Home

As the return of the Stardust cometary samples approaches, it's encouraging to learn of a Stardust-related project with interstellar implications. Stardust@Home is an Internet-based search for interstellar dust in the Stardust materials, one that relies, like SETI@Home before it, on the combined computing resources of those who volunteer to assist. Unlike the latter project, however, Stardust@Home requires a Web-based training session and subsequent test, after which those who pass will be able to download a virtual microscope and images from the Stardust collector. It will take personal scrutiny rather than just computing cycles to try to locate interstellar materials. Although most attention has focused on Stardust's cometary samples, its aerogel collector was also designed to catch the first interstellar dust ever collected. The number of dust grains found may number in the low dozens, but even one would be a breakthrough, marking the first time such materials were studied in a...

read more

New Light on Charon

While we're on the subject of Pluto -- and we will be off and on as the New Horizons launch approaches -- it's intriguing to see how much we have already learned about the Pluto/Charon pair from Earth-based telescopes. We've just found out, for instance, that Charon's radius is 606 kilometers, with a fudge factor of plus or minus 8 kilometers. That's a pretty remarkable measurement for an object this distant, but it proceeded through a reliable and time-honored astronomical method: stellar occultation. If you know when and where to look, an occultation can provide reams of information. What's happening is that the nearer object, in this case Charon, passes in front of a distant star; observations of that event give us not just accurate size estimates but useful data on the object's density and possible atmosphere. For by combining the occultation data with measurements from the Hubble Space Telescope, the team (from MIT and Williams College) was able to establish a density for Charon...

read more

Stardust Approaching

The return of the Stardust mission draws near. The spacecraft should jettison its return capsule around 5 AM EST on January 15; the latter is to plunge into Earth's atmosphere at the highest return speed ever recorded, some 29,000 miles per hour. A parachute will bring the capsule to the ground at the Utah Testing and Training Range southwest of Salt Lake City, and at that point we should have our first samples of primordial cometary dust, captured two years ago near Comet Wild 2. Even more intriguing, we should have particles of interstellar dust collected during the long approach to the comet. This has been a remarkable mission, and at times a scary one. Stardust was launched in February of 1999 and began collecting interstellar dust in 2000. 2.88 billion miles have accumulated during this voyage, including a gravity assist from Earth and an encounter with asteroid 5535 Annefrank. In November of 2000, a vast solar flare skewed the spacecraft's navigation system by creating false...

read more

Pluto’s Temperatures an Enigma

Centauri Dreams admits to being less than absorbed by the debate over whether Pluto is or is not a planet. Let the logic-choppers have their day; what's interesting is that whatever we call it, Pluto remains an enigmatic, unexplored world that has much in common with other Kuiper Belt objects. And its enigmatic nature seems reinforced by recent studies showing that the surface of Pluto is actually colder that it ought to be. Measuring surface temperatures on a body currently 30 AU from the Sun is tricky business, to be sure, and remember that in the course of a Plutonian year, that distance can vary from 30 to 50 AU, causing what little atmosphere is present to freeze and fall to the surface in the form of snow or ice. But studies of how sunlight is reflected from Pluto and its largest moon Charon -- using the Submillimeter Array (SMA) on Mauna Kea in Hawaii -- have enabled the first thermal measurements that could discriminate between the two objects. Image: In this artist's...

read more

An Odd Kuiper Belt Find

Finding new objects in the Kuiper Belt is getting to be almost routine. But what makes the latest find intriguing is the shape of its orbit. Designated 2004 XR 190 by the International Astronomical Union and nicknamed 'Buffy,' the new object is currently 58 AU from the Sun, about twice the distance to Neptune. But an analysis of its orbit shows that it does not approach closer than 50 AU, complicating theories on how Kuiper Belt objects wind up in the positions they occupy. Here's the problem: the few objects discovered beyond 50 AU (where the main Kuiper Belt seems to end), have all been in extremely eccentric, or non-circular orbits. Bear in mind that these high eccentricity orbits have been assumed to be the result of gravitational interactions with Neptune or some other outer Solar System body. The encounter was assumed to have acted as a gravitational slingshot to fling the KBO objects into the deep. But Buffy confounds these theories by coming nowhere near Neptune; another...

read more

Eyes on the Kuiper Belt

With the launch of the New Horizons mission to Pluto, Charon and beyond a scant month away, it's fitting to acknowledge the 100th birthday of Gerard P. Kuiper, who predicted the existence of the band of debris and minor planets we now call the Kuiper Belt in 1950. It would take forty years for confirmation of the prediction, but the study of objects large and small beyond the orbit of Neptune now has high visibility, and is one of the reasons for the New Horizons mission. Kuiper's work was hardly limited to the now famous belt. He was also a pioneer in the study of Cepheid variables, those highly useful 'standard candles' that allow us to assess stellar distances (the period of a Cepheid variable being related to its intrinsic luminosity). Other objects of Kuiper's interest included eclipsing binaries, and he played a key role in early work on Titan's atmosphere. Add to this that his students included the likes of William Hartmann, Carl Sagan, and New Horizons Science Team...

read more

Enceladus Plumes Recall Project Orion

Back in the heady early days of Project Orion, Freeman Dyson was already thinking about an advanced interplanetary vehicle that could take a 1300-ton payload to Saturn. His target was Enceladus. "We knew very little about the satellites in those days," Dyson said. "Enceladus looked particularly good. It was known to have a density of .618, so it clearly had to be made of ice plus hydrocarbons, really light things, which were what you need both for biology and for propellant, so you could imagine growing your vegetables there..." The quote is from George Dyson's Project Orion: The True Story of the Atomic Spaceship (New York: Henry Holt, 2002), which belongs on the shelves of anyone interested in the human future in space. And it always comes back to me when I hear more Cassini news from Enceladus, and think how feasible it once seemed (in the 1960's!) to go straight to the outer planets. Talk about audacity -- Orion would set off atomic bombs behind a pusher plate to drive a ship so...

read more

Hayabusa Attempts Second Landing

The Japanese spacecraft Hayabusa evidently managed to land on asteroid Itokawa several days ago after all, according to this from the Japan Aerospace Exploration Agency: "At the timepoint of Nov. 21, Hayabusa was judged not to have landed on the surface. According to the replayed data, however, it was confirmed that Hayabusa stayed on Itokawa by keeping contact with the surface for about 30 minutes after having softly bounced twice before settling. This can be verified by the data history of LRF and also by attitude control record..." For more, you can read the complete JAXA statement here. The spacecraft is now being maneuvered for a second landing (and surface sampling) attempt. Note the shadow in this photograph, much more clearly visible than in the previous images of Itokawa from Hayabusa. There are people who shrug at this sort of thing, but to Centauri Dreams images like these are breathtaking. They remind us that a human presence has now encountered objects hitherto...

read more

Nudging an Earth-bound Asteroid

The Discovery Channel's news site offers a brief story about changing the course of an Earth-threatening asteroid. Specifically, the story focuses on a paper in the November 10 issue of Nature by Edward Lu and Stanley Love that offers a new method of avoiding an impact without even touching the asteroid. Previous options had included docking a spacecraft to the asteroid and applying steady thrust to change its course, but that method seems like a long-shot considering how tricky it is to get a conventional rocket to such an object with fuel to spare for an extended burn. What Lu and Love discuss is a 20-ton spacecraft that would actually use the weak gravitational force between asteroid and ship to effect a change in the asteroid's orbit. In essence, the spacecraft would use nuclear-electric thrusters to maintain a fixed position above the asteroid. If such a mission were flown years in advance of an asteroid impact, the force exerted should be enough to change the expected impact...

read more

New Moons for Pluto

The Hubble Space Telescope, in operations designed to support the upcoming New Horizons mission to Pluto, has discovered two new Plutonian moons. It's too early to speak with confidence about their size because we don't yet know to what extent light reflects from their surfaces, but the early estimates are for diameters of 32 kilometers (20 miles) and 70 kilometers (45 miles). Charon, at 1200 kilometers, dwarfs these tiny objects, provisionally designated S/2005 P1 and S/2005 P2. Their faintness makes it clear why they weren't spotted before: the new moons are roughly 5000 times fainter than Pluto itself. For more, see this Southwest Research Institute news release. "Our result also suggests that other bodies in the Kuiper Belt may have more than one satellite. We planetary scientists will have to take these new moons into account when modeling the formation of the Pluto system," says co-leader Dr. Alan Stern, executive director of the SwRI Space Science and Engineering Division. And...

read more

On Deflecting Near Earth Objects

The B612 Foundation continues to examine the danger of near-Earth objects (NEOs). As noted earlier in these pages, B612 points to the continuing evidence for asteroid and comet impacts and their role in shaping the planet's history; the much discussed demise of the dinosaurs, due to a likely asteroid strike in the Yucatan, is but one of the instances where the planetary ecology has been altered. We know that the Earth orbits in a swarm of near-Earth asteroids, with a probability of collision in this century that the Foundation pegs at an unacceptably high 2 percent. Given these concerns, and the possible dangers posed by the object called NEO 99942 Apophis, the Foundation has engaged in a dialogue with NASA about possible missions to this asteroid. Apophis (also known as 2004 MN4) is on course for a near-miss in 2029 , with the 400-meter asteroid approaching to within 32,000 kilometers. What happens afterwards as the near-miss itself disrupts the orbit of this object remains a...

read more

New Horizons Readied for Flight

With liftoff scheduled for January, the New Horizons mission to Pluto and Charon (and, if we are lucky, at least one flyby of a more distant Kuiper Belt object) continues to generate excitement in the scientific community. The spacecraft is now at the Kennedy Space Center and will be moved to the launch pad in December, with liftoff planned for January 11. Major testing on the science payload is complete. The next round of major instrument calibrations and testing won't occur until the early months of the journey as New Horizons moves toward a 2007 flyby of Jupiter for a gravity assist to Pluto. How do you package enough instrumentation for good science at the edge of the Solar System into a payload that draws only 28 watts of power? The science payload work was led by the Southwest Research Institute (SwRI), whose recent news release lists the seven instruments that will explore these icy worlds: Alice, an ultraviolet imaging spectrometer that will probe the atmospheric composition...

read more

Bright Spot on Titan Still a Mystery

What is that bright 300-mile wide patch on Xanadu, the continent-sized region on Titan, that Cassini noted last March? The area outshines everything else on the moon in long infrared wavelengths (it's described as "...spectacularly bright at 5-micron wavelengths..."), and after considerable investigation does not appear to be a cloud, a mountain or a geologically active hot spot. In visible light, Cassini saw a bright arc-shaped feature of approximately the same size in late 2004 and again in 2005. Image: Combined VIMS and ISS images of Titan's mysterious bright red spot gives researchers more information about the feature than either single view. (Credit: NASA/JPL/University of Arizona/Space Science Institute). That quotation above comes from a University of Arizona news release, one that goes on to note that subsequent radar imaging found no real temperature variation between the spot and the terrain around it. That rules out the possibility of an active ice volcano, and quickly...

read more

A Moon for Xena

Everyone is calling 2003 UB313, the Solar System's 10th planet, Xena. The name comes from a TV warrior princess of whom the curmudgeonly Centauri Dreams, never one for television, was utterly unaware. Now Xena has been found to have a moon, inevitably named Gabrielle after an equally incrutable character on the series (apparently the sidekick of Xena herself). One-tenth the size of Xena, Gabrielle is slated for further observations with the Hubble Space Telescope that will allow more accurate determination of its mass. The advent of Gabrielle is good news for those wishing to learn more about Xena. From a California Institute of Technology press release quoting Michael Brown, the 10th planet's discoverer: "A combination of the distance of the moon from the planet and the speed it goes around the planet tells you very precisely what the mass of the planet is," explains Brown. "If the planet is very massive, the moon will go around very fast; if it is less massive, the moon will travel...

read more

New Horizons Arrives in Florida

The New Horizons spacecraft, slated for a January launch and a decade-long journey to Pluto and Charon, has arrived at Kennedy Space Center for final preparations and testing. This follows a four-month series of tests at Goddard Space Flight Center and the John Hopkins University Applied Physics Laboratory, where the craft was designed and built. What's in the immediate future for New Horizons? The October testing period includes readiness checks, tests of instrument functionality and checks on communications via NASA's Deep Space Network. Hydrazine fuel for attitude control and course correction maneuvers will be loaded in November, and the craft will then undergo a final spin-balance test. A launch countdown rehearsal will be held in November, and in December the spacecraft will be loaded onto the Atlas V rocket that will carry it aloft. Launch is now scheduled for January 11, 2006, with later launch windows available daily between January 12 and February 14.

read more

On Don Quijote, ESA’s Asteroid Deflection Mission

There aren't many natural disasters we know how to prevent, as the recent sad events along the Gulf of Mexico demonstrate. But one thing we can manage with today's technology is to deflect an incoming asteroid so that it doesn't destroy a large chunk of the Earth. At least, we think we can manage it, but it will take technology testing like the European Space Agency's Don Quijote mission to see whether asteroid deflection really is within our capabilities. Don Quijote is envisioned by ESA's Advanced Concepts Team as a two-part mission. One spacecraft, named Hidalgo, is to strike the asteroid; the other, named Sancho, is to orbit the asteroid months before Hidalgo's advent, observing it before and after impact. ESA has now selected two target asteroids for this mission, designated 2002 AT4 and 1989 ML. Design options for the twin spacecraft are now under active consideration. Image: An artist's impression of an asteroid striking the Earth. Credit: ESA. But wait -- isn't deflecting...

read more

Possible Life Strategies on Titan

Centauri Dreams recently looked at Titan as a possible abode for life, energized by a paper given at the Division of Planetary Sciences meeting by David Grinspoon. A researcher at the Southwest Research Institute (Boulder, CO), Grinspoon is also an author whose book Lonely Planets: The Natural Philosophy of Alien Life (New York: Harper, 2004) discusses in depth and style the issue of extraterrestrial life and where we might find it. His Web site offers numerous links to his scientific output and materials from his book. Grinspoon has been all over the news lately, as witness this interview in the online journal Astrobiology Magazine. Recently, he was kind enough to forward a copy of his DPS paper "Biologically Enhanced Energy and Carbon Cycling on Titan?" Centauri Dreams reads a lot of research papers, but Grinspoon's work stands out not only for its rigor but its sheer energy. He speculates, for example, that our model of miniaturized cellular life in water on Earth may be...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives