Interstellar Precursor? The Statite Solution

What an interesting object Methone is. Discovered by the Cassini imaging team in 2004 along with the nearby Pallene, this moon of Saturn is a scant 1.6 kilometers in radius, orbiting between Mimas and Enceladus. In fact, Methone, Pallene and another moon called Anthe all orbit at similar distances from Saturn and are dynamically jostled by Mimas. What stands out about Methone is first of all its shape and, perhaps even more strikingly, the smoothness of its surface. We’d like to know what produces this kind of object and would also like to retrieve imagery of both Pallene and Anthe. If something this strange has equally odd companions, is there something about its relationship with both nearby moons and Saturn’s rings that can produce this kind of surface?

Image: It’s difficult not to think of an egg when looking at Saturn’s moon Methone, seen here during a Cassini flyby of the small moon. The relatively smooth surface adds to the effect created by the oblong shape. NASA/JPL-Caltech/Space Science Institute.

Our path to interstellar missions will see us ramp up the velocities of our probes to objects in our own system, made more accessible by shorter mission times, sail technologies and miniaturization. There is no shortage of targets between high-interest moons like Europa, Titan and Enceladus and Kuiper Belt Objects like Arrokoth. For that matter, the interstellar interloper ‘Oumuamua may yet be within range of faster missions (and in fact we’ll be examining ‘Oumuamua prospects in at least one upcoming article). But the point is that intermediate steps to interstellar will enhance exploration of objects we’ve already visited and take us to numerous others.

One way to proceed is discussed by Greg Matloff and Les Johnson in a recent paper for the Journal of the British Interplanetary Society that grew out of a presentation at the 6th International Space Sailing Symposium this summer. Here the idea is to adjust the parameters of a solar sail so that a balance is achieved between the gravitational force of the Sun and the solar photon radiation impinging upon it. The parameters are clear enough: We need a sail of a specific thickness (areal density), and tightly constrained figures for its reflectance and absorbance. We want to cancel out the gravitational acceleration imposed by the Sun through the propulsive effects of solar photons, allowing us to effectively ‘hover’ in place.

Hovering isn’t traveling, but bear with me. We’ve looked at this kind of sail configuration before and discussed its development in the hands of Robert Forward. It was Forward who dubbed the configuration a ‘statite,’ implying that when the force on the sail from solar radiation exactly balances the gravitational force acting upon it, the spacecraft is effectively in what the paper calls a ‘force-free environment.’

This gets interesting in terms of fast probes because while the statite is normally considered to remain stationary (and it will do so when the sail is stationary relative to the Sun during sail deployment), something else happens when the craft is orbiting the Sun when the sail is deployed. The sail now moves in a straight line at its orbital velocity at the time of deployment. The authors style this ‘rectilinear sun-diving.’ As Matloff noted in an email the other day:

“To do this operationally, it is necessary to maintain the sail normal to the Sun – broadside facing the Sun – during the acceleration process. The sail moves off at its velocity relative to the Sun at sail deployment because radiation pressure force on the sail balances solar gravitational attraction. This is a consequence of Newton’s First Law.”

Using this method we can fling the sail and payload outward. What is known as the sail’s lightness factor is the ratio of solar radiation forces divided by the solar gravitational force, and in the case of the rectilinear trajectory described above, the lightness factor is 1. So consider a sail being deployed from a circular orbit of the Sun at 1 AU. The statite, free of other forces, now moves out on a rectilinear trajectory at 30 kilometers per second, which is the Earth’s orbital velocity. The number is noteworthy because it practically doubles the interstellar velocity of Voyager 1. Matloff and Johnson point out that at this velocity, the Sun’s gravitational focus at 550 AU is reachable in 87 years.

Moving at the same pace gets us to Saturn (and the interesting Methone) in 1.5 years. I’m going to run through the other two scenarios the scientists consider to show the range of possibilities. Assume an orbit that is not circular but rather one having a perihelion of 0.7 AU and aphelion at 1 AU. Deploying the sail at perihelion allows the spacecraft to reach 38 kilometers per second, getting to the inner gravitational focus in about 66 years. Finally, with an aphelion at 1 AU and perihelion at 0.3, our craft achieves a velocity after sail deployment of 66 km/sec, reaching the focus in 38 years.

As regards to ‘Oumuamua, the third scenario, with sail deployment at perihelion some 0.3 AU out from the Sun, achieves enough interstellar cruise velocity to catch the object roughly around 2045, when it will be some 220 AU from the Sun. To these times, of course, must be added the time needed to move the sail from aphelion to the sail deployment point at perihelion, but the numbers are still quite satisfactory.

This is especially true given that we are talking about relatively near-term technologies that are under active development. Matloff and Johnson calculate using an areal mass thickness of 1.46 X 10-3kg/m2 for the proposed missions. They show current state of the art solar sail film as 1.54 X 10-3kg/m2 (this does not include deployment mechanisms, structure, etc). The point is clear, however: Achieving 30 km/sec or more offers us fast passage to targets within the outer Solar System as we analyze options for missions beyond it, using technologies that are not far removed from present capability.

The authors note that we can’t assume a constant value for solar radiation; the solar constant actually varies by about 0.1% in response to the Sun’s activity cycle. Hence the need to explore options like adjusting the curvature of the sail or using reflective vanes for fine-tuning. Controlling the sail will obviously be critical. The paper continues:

Control of the sail depends upon the ability of the system to dynamically adjust the center of mass (CM) versus the center of (photon) pressure (CP). Any misalignment of the CM versus the CP will induce torques in the sail system that have to be actively managed lest the offset result in an eventual loss of control. The sail will encounter micrometeorites and interplanetary dust during flight that will create small holes in the fabric, changing its reflectivity asymmetrically and inducing unwanted torques. Depending upon how the sail is packaged and deployed, there may also be fold lines, wrinkles, and small tears that occur with similar end results.

Hence the need for a momentum management system, which could involve possibilities like reflective control devices for roll or diffractive sail materials that manipulate the exit direction of incoming photons as needed to counter these effects. The authors point out that the solar sail propulsion systems for this kind of mission are at TRL-6 despite recent failures such as the loss of the Near-Earth Asteroid Scout Cubesat mission, which carried an 86 square meter solar sail that was lost after launch in late November 2022. With solar sails under active development, however, the prospect for exploring rectilinear sundiver missions in the near term seems quite plausible.

The paper is Matloff & Johnson, “Breakthrough Sun Diving: The Rectilinear Option,” Journal of the British Interplanetary Society Vol. 76 (2023), 283-287.

A ‘Pinched’ Beam for Interstellar Flight

Take a look at the image below. It’s a jet coming off the quasar 3C273. I call your attention to the length of this jet, some 100,000 light years, which is roughly the distance across the Milky Way. Jeff Greason pointed out at the Montreal symposium of the Interstellar Research Group that images like this suggest it may be possible for humans to produce ‘pinched’ relativistic electron jets over the much smaller distances needed to propel a spacecraft out of the Solar System. This is an intriguing image if you’re interested in high-energy beams pushing payloads to nearby stars.

Greason is a self-described ‘serial entrepreneur,’ the holder of some 29 patents and chief technologist of Electric Sky, which is all about beaming energy to craft much closer to home. But he moonlights as chairman of the Tau Zero Foundation and is a well known figure in interstellar studies. Placing beaming into context is a useful exercise, as it suggests alternative ways to generate and use a beam. In all of these, we want to carry little or no fuel aboard the craft, drawing our propulsion from the home system.

Image: Composite false-color image of the quasar jet 3C273, with emission from radio waves to X-rays extending over more than 100,000 light years. The black hole itself is to the left of the image. Colors indicate the wavelength region where energetic particles give off most of their energy: yellow contours show the radio emission, with denser contours for brighter emission (data from VLA); blue is for X-rays (Chandra); green for optical light (Hubble); and red is for infrared emission (Spitzer). Credit: Y. Uchiyama, M. Urry, H.-J. Röser, R. Perley, S. Jester.

Laser beaming to a starship comes first to mind, going back as it does to the days of Robert Forward and György Marx, who explored options in the infancy of the technology. Later work on laser ad well as microwave beaming has included such luminaries as Geoffrey Landis, Gregory Matloff and James Benford, not to mention today’s intense laser effort via Breakthrough Starshot and the ongoing work at UC-Santa Barbara under Philip Lubin. A separate track has followed beamed options using elementary particles or, indeed, larger particles; the name Clifford Singer comes first to mind here, though Landis has done key work. A major problem: Beam power is inversely proportional to effective range. If we’re after faster, bigger ships, we need to find a way to extend the range of whatever kind of beam we’re sending.

We’ve lost some of the scientists who have dug deeply into these matters. Dana Andrews died last January, and Jordin Kare left us some six years ago (I will have more to say about Dr. Andrews in a future post). Kare developed ‘sailbeam,’ which was a string of micro-sails sent as fuel fodder to a larger starship. Pushing neutral particles to the long ranges we need faces problems of beam divergence, and charged particle beams are even more tricky, because like charges cause the beam to diverge.

Greason outlined another possibility at Montreal, one he described as ‘no more than half of an idea,’ but one he’s hoping to provoke colleagues to explore. This beaming option uses the ‘pinch’ phenomenon, in which charged beams in a low-density plasma can confine themselves over long distances. The mechanism: A beam carrying a current creates a circular axial magnetic field which in turn confines the beam. ‘Pinching’ is a means of self-confinement of the beam that has been studied since the 1930s. A pinch forming a jet explains why solar proton events can strike the Earth despite the 1 AU distance, and why galaxy-spanning jets like that in the image above can form.

Image: Jeff Greason, chief technologist and co-founder of Electric Sky.

We normally hear about a ‘pinch’ in the context of fusion research, but here we’re more interested in the beam’s persistence than its ability to compress and heat a plasma. The beam persists until it loses energy by collisions, which causes the current sustaining it to weaken and lose confinement. Although Greason said that ion beams may prove feasible, he noted that we’re getting into territory where we simply lack data to know what will work. Issues of charge neutralization and return currents from the beam come into play, as do long-range oscillations that can affect the beam. But the idea of applying a magnetic field to a stream of electrons along a specific axis to create the z-pinch is well established. If we can create an electron beam using this method, we can resurrect the idea of using charged particle beams to push our starship.

How to use power beamed in this fashion once it arrives at the target craft is a significant question. Greason spoke of the beam striking a plasma-filled waveguide which can ‘couple to backwards plasma wave modes,’ in effect launching plasma in the opposite direction as reaction mass. This keys to existing work on plasma accelerators (so-called “wakefield” accelerators), which use similar physics. How much of the beamed energy can be returned in this way remains up for investigation.

The consequences of mastering pinched beaming technologies would be immense. If we can increase the range of a beam from 0.1 AU to 1000 AU, we open up the possibility of sending much larger spacecraft, up to 105 larger, at the same power levels. We go from a gram-sized spacecraft as contemplated by Breakthrough Starshot’s laser methods to one of 10 kilograms. In doing this we have also changed the acceleration time from minutes to months. That increased payload size is particularly useful when it allows a braking system aboard for long-term study of the target.

This method demands a space-based platform – these ideas are inapplicable when applied to a ground installation and a beam through the atmosphere. Beaming from a location near the Sun offers obvious access to power and could be made possible through a near-Solar statite; i.e., an installation that ‘hovers’ over the Sun at Parker Solar Probe distances. Greason adds that to add maximum stability to the beam, the statite would have to transmit from a location between the Sun and the target star; i.e, the flow should be with the current of the solar wind as opposed to across the stream.

Image: Can we operate a statite at 0.05 AU from the Sun? This NASA visualization of the Parker Solar Probe highlights the kind of conditions the craft would be operating in.

The operative statite technology is thermionics, where electrons ‘boil’ out of a hot cathode and collect on a cold anode. Greason’s statite winds up with approximately 50 kilowatts per square meter of useful power; factoring in the thickness of the foils used in the installation, he calculates 150 kilowatts per square kilogram. A 1 gigawatt electron beam results. So operating at about 11 solar radii, we can produce the beam we need while also being forced to tackle the issues involved in maintaining a statite in position. One possibility is a plasma magnet sail to make use of the supersonic solar wind, a notion Greason has been exploring for years. See Alex Tolley’s The Plasma Magnet Drive: A Simple, Cheap Drive for the Solar System and Beyond for more.

Greason’s tightly reasoned, no-nonsense approach makes him a hugely appealing speaker. He’s offering a concept that opens out into all kinds of research questions, and spurring interested parties to advance the construct. A symposium of like-minded scientists and engineers like that in Montreal provides the kind of venue to gin up that support. The implication of being able to reach 20 percent of lightspeed with a multi-kilogram spacecraft is driver enough. A craft like that could begin exploration of nearby stars in stellar orbit there, rather than blowing through the destination system within a matter of minutes. What smaller beam installations near Earth could do for interplanetary exploration is left to the imagination of the reader.

Crafting the Interstellar Sail at Delft

Breakthrough Starshot’s concept for a flyby of Alpha Centauri would reach its destination in a single human generation. We’ve discussed sail materials in the last couple of posts, but let’s step back to the overview. Using a powerful ground-based laser, we illuminate a sail on the forward side of which are embedded instruments for communications, imaging and whatever we choose to carry. We need a sail that is roughly 4 meters by 4 meters, and one that weighs no more than a single gram.

As Richard Norte pointed out to the Interstellar Research Group’s Montreal symposium (video here), a US penny weighs 2.5 grams, which gives an idea what we are up against. We need a payload at gram-scale and a sail that is itself no more than a gram. Obviously our sail must be of nanoscale thickness, and able to take a beating, for we’re going to light it up for 10 minutes with that laser beam to drive it to 20 percent of lightspeed. We’re engineering, then, in the realm of nanotechnology, but working on combining our nanoscale components into large objects that can be fabricated at the macro-scale.

This is an uncharted frontier in the realm of precision and microsystems engineering, and it’s one that Norte and his team at Delft University of Technology are pushing into one experiment at a time, with recent funding from the EU and Limitless Space Institute. Things get fascinating quickly at this scale. To make a membrane into a mirror, you puncture your material with nanoscale holes, producing reflectivity at specific wavelengths. The Delft work is with silicon nitride, and in the current thinking of the Starshot team, this material formed as a metagrating is layered between the instruments on the lightsail and the sail body, becoming the means for keeping the sail on the beam and providing attitude control while protecting the instruments.

Image: Delft University of Technology’s Norte, whose lab focuses on novel techniques for designing, fabricating and measuring nanotechnologies needed for quantum optics and mechanics. Credit: Delft University of Technology.

At Delft, as Norte made clear, we’re a long way from achieving the kind of macrostructures that Starshot is looking at, but remember that Starshot is conceived as a multi-decade research effort that will rely on advances along the way. The Delft team is showing us how to make the thinnest conceivable mirror, using machine learning optimization techniques to optimize nanotechnology. The material of choice turns out to be silicon nitride, as we saw in our previous Starshot discussion. Says Norte:

”Of all the material people have used for making photonic crystals, silicon nitride winds up being one of the best. We can make it big, we can make it reflective, we can make it without wrinkles, and it actually has parts per million absorption. This extremely low absorption means we won’t blow this thing up when we shine a laser on it.”

Image: Scanning electron microscope image of a silicon nitride membrane. Credit: Richard Norte/Delft University of Technology. 9:47

The question is how to move to larger mirrors, given that the state of the art when Starshot was announced was at the 350-micron to a side scale. It would be helpful if we could simply ‘stitch’ smaller units together to craft a larger sail, but Norte likens that idea to trying to stitch two soap bubbles together – the structure is so amorphous, filled with the holes of the lattice – that we have to rely on manufacturing techniques that can produce larger wafers rather than combinations of smaller ones.

Scaling up is no small challenge. Norte told the audience at Montreal that his team can now make photonic crystals in the range of 450 mm to the side. The crucial term here is ‘aspect ratio,’ which relates the thickness of a metamaterial to its diameter or width. Interacting with light on the nanoscale means designing around the aspect ratio of these structures to achieve specific nanophotonic effects. Tuning the size and spacing of the holes in the lattice governs the wavelength at which the sail will reflect light.

No less important is the coupling of the laser beam with the sail, because while we are planning to accelerate these sails to speeds that are, by current standards, fantastic, we can only do so by optimizing how they interact with the beam. ‘Alignment resilience’ refers to the reaction of the sail as it is hit by the beam. New ways to arrange the nanoscale holes in the material weigh reflectivity against cost and efficiency, and Norte pointed out that a sail will need to be reflective over a wide range of light, given that it will experience large Doppler shifts in its abrupt change in velocity.

Getting this right will involve considering misalignments between the laser and the sail that can be self-adjusting depending on the design of the mirror lattice, and perhaps faster to accelerate. We seem at the moment to be decades away from being able to make meter-scale photonic crystal lightsails, a daunting thought, but Norte has an exhilarating thought about what we can do today with a sail of the 450 mm size now possible. An Alpha Centauri mission reaches target in centuries, perhaps as few as 200 years. This is assuming a one-gram payload and 70 percent reflectivity.

A wafer size fabrication of 100 mm can be used to build a sail that reaches Voyager 1 distance in 162 days, by Norte’s calculation. Even using the tiny 4.5 cm wafer Delft has already made, we could make that journey in about a year. Using the same 4.5 cm demonstrator alone, we reach Mars with a 1-gram payload in 32 hours, Saturn in 22 days, Uranus in 46 days and Neptune in 74 days. Contrast that with the speed of our fastest flyby probes. Voyager 2 took 12 years, for instance, to reach Neptune.

“It’s a compelling thought,” says Norte. “We can. send microchips to Mars the way we send international mail, just shotgunning them out there in 32 hours. Or we can get them to Titan’s oceans in less than a month. This is possible in nanotechnology today.”

Experimental work at Delft involves developing a sail that can be fabricated in a plasma etcher that allows the team to remove the silicon underneath, suspend the structure, and move it (without breaking vacuum) for lift by a laser. The dynamics of the sail under the beam can be explored, as can the question of beam-riding. Out of all this, Norte said, should come new levels of optical levitation, novel structural engineering, a new generation of sensors and detectors. In other words, new material science ahead.

Aerographite and the Interstellar Ark

The science fiction trope that often comes to mind in conjunction with the interstellar ark idea is of the crew that has lost all sense of the mission. Brian Aldiss’ Non-Stop (1958), published in the US as Starship, is a classic case of a generation ship that has become the entire world. The US title, of course, gave away the whole plot, which is sort of ridiculous. Have a look at the British cover, which leaves the setting mysterious for most of the book, and the American one, which blatantly tells you what’s going on. I wonder what Aldiss thought of this.

Be that as it may, interstellar arks are conceived as having large crews and taking a lot of time to move between stars, usually on the order of thousands of years. We can trace the concept in the scientific literature back to Les Shepherd’s famous 1952 paper on human interstellar travel, a key paper in the evolution of the field. An interesting adaptation of the paper appeared in Science Fiction Plus in April of the following year (see The Worldship of 1953). Alan Bond and Anthony Martin, whose names will always evoke Project Daedalus, likewise discussed interstellar arks, and Greg Matloff, whose presentation we looked at in the last post, has been working the numbers on these craft for much of his career.

Let’s look, then, at what Matloff and Joseph Meany say in their paper on aerographite. Here we’re talking about a sailcraft driven by solar photons rather than beamed energy, one that is based on an inflatable, hollow-body sail (itself a concept that goes back at least to the 1980s). Working with Roman Kezerashvili, Matloff has in the past addressed hollow-body sails made of beryllium as well as graphene, last discussing the latter in an interstellar ark concept in 2014. Here he and Meany set up an aerographite-graphene variant using a 90% absorptive and 10% reflective layer of aerographite that effectively pushes against the Sun-facing surface of graphene.

We’re in the realm of big numbers again. The radius of the sail is 764 kilometers, with the sail massing 5.49 X 106 kilograms. The as yet unpublished paper on this work shows that the payload mass (2.56 X 107 kilograms) is considerably higher than would be possible using a hollow-body sail made only of graphene. It’s interesting that for the close solar pass envisioned in the ‘sundiver’ maneuver for the sail, Matloff chooses a perihelion of 0.1 AU in order to hold down the g forces for the human crew. The point came up in the question session after his Montreal talk, for there do seem to be technologies for sustaining (for a short period) g-forces of 3 g and beyond, which would allow for a closer perihelion pass.

In any case, our ark reaches Alpha Centauri in about 1375 years carrying a crew of several hundred. If that figure seems exasperatingly high, consider that in the past few decades we’ve gone from the routine assumption that an interstellar mission would take millennia to the now plausible suggestion that we can get it down to a century or so. Massive arks, of course, take much longer, but this number isn’t bad. NASA’s Les Johnson told me in 2003, when I mentioned a thousand-year mission, that he would love to see a plan for one that could make the journey that fast. But here we are, discussing materials and techniques that can go well below that for unmanned probes. And then there is that Breakthrough Starshot concept of 20 percent of lightspeed…

We are, in other words, making progress. But so much remains to be done with regard to this particular material. Indeed, the work on graphene reminds us how little we know about the physical properties of aerographite. The paper lays out some large questions:

  • Will what we know of aerographite’s properties be sustained when we reduce the thickness to a single micron?
  • Will aerographite be stable at the temperatures demanded by our perihelion calculations?
  • Will aerographite equal the performance of graphene when exposed to the space environment?
  • What about trajectory adjustment for a non-reflecting surface like aerographite?

Thus the paper’s conclusion:

It is wise to consider the above discussion as very preliminary. There are many unknowns regarding aerographite and graphene that must be addressed before the missions discussed can be considered feasible.

One unknown is the closest feasible perihelion distance. Just because the Parker Solar Probe will likely survive its close perihelion pass does not mean that a carbon hyper-thin sail will do the same. It is necessary for some researcher to perform an exhaustive study of the effects of the near-Sun space environment upon these substances. A good consideration of the issues to be addressed is the exhaustive study for beryllium solar-photon sails performed by Kezerashvili [9].

One last note on early aerographite sails: What interesting problems they pose for tracking. We’d have to use infrared to follow their course, and a space-based telescope to do that because of infrared absorption in Earth’s atmosphere. Heller and team figured out in their aerographite paper that JWST could track a 1 m aerographite sail out to 2 AU. But swarm configurations (and we’ll be talking about this concept again in the near future) produce a signature that could be detected well beyond the Kuiper Belt. An onboard laser would greatly simplify the problem if we could find ways to power it up aboard the highly miniaturized craft that would be our first experiments.

The paper is Matloff & Meany, ”Aerographite: A Candidate Material for Interstellar Photon Sailing,” submitted to JBIS and ultimately to be published as part of the proceedings of the Interstellar Research Group’s 2023 symposium. The 2014 paper on graphene arks is “Graphene Solar Photon Sails and Interstellar Arks,” JBIS Vol. 67 (June 2014), 237-246 (abstract). The paper on beryllium sails by Roman Kezerashvili is “Thickness Requirements for Solar Sail Foils,” Acta Astronautica 65 (2009), 507-518 (abstract).

Interstellar Sails: A New Analysis of Aerographite

A material called aerographite offers options for solar sails that transcend the capabilities of both beryllium and graphene, the latter being the most recent candidate for fast sail missions outside the Solar System. Developed at the Technical University of Hamburg and refined by researchers at the University of Kiel, aerographite came to the attention of the interstellar community in 2020 thanks to a groundbreaking paper by René Heller (Max Planck Institute for Solar System Research, Göttingen), working with co-authors Guillem Anglada-Escudé (Institut de Ciencies Espacials, Barcelona), Michael Hippke (Sonneberg Observatory, Germany) and Pierre Kervella (Observatoire de Paris).

I’ve written about aerographite before, in Aerographite: An Advance in Sail Materials with Deep Space Implications and Solar Sails: Deeper into the Aerographite Option, both of which are in the archives along with several other posts on the subject. But here I need to pause for a brief administrative moment: The recent changes to the website inadvertently resulted in a data overwrite in the archives that replaced some specialized characters used in scientific notation with question marks. Not good! I have a crack programmer working the fix using my backups, but at the moment the articles I’ve just mentioned do contain several missing characters. This will be remedied soon.

Back to aerographite, where I’m pleased to see this work receiving the further scrutiny it deserves, for this is a highly unusual material, not what you would expect when conceiving deep space missions. As Gregory Matloff and Joseph Meany explain in a new paper discussed at the Interstellar Research Group’s Montreal symposium, aerographite is both extremely low density and utterly opaque. The normal assumption is that an effective solar sail will be reflective (and indeed, graphene concepts include ways to introduce reflectivity, which could be achieved by adding substrates or doping graphene with alkali metals, thus increasing mass).

Image; A detail of the world’s lightest material: aerographite. Open carbon tubes form a fine mesh and offer a low density of 0.2 milligram per cubic centimetre. The picture was taken with a scanning electron microscope (SEM). Credit: TUHH.

But the startlingly black aerographite so effectively absorbs photons that in sail configuration it will be pushed into interstellar space. Indeed, Guillem Anglada-Escudé told me three years ago that absorbance works quite well for solar sailing, less effective than a highly reflective material by no more than a factor of 2. As Matloff (New York City College of Technology, CUNY) and Meany (Savannah River National Laboratory) explain in the paper growing out of their work, aerographite is produced by a chemical vapor deposition process that yields a synthetic foam connected by carbon microtubes, one whose opacity is complemented by its light weight. Indeed, the teams that developed it called aerographite “the lightest known material.”

At Montreal, Matloff explored how the material might be deployed in two classes of interstellar missions, looking at such factors as the maximum temperature of the sail at various perihelion distances (for possible ‘sundiver’ missions), the sail’s thermal emissivity, and the peak acceleration that can be achieved, along with payload mass limitations for a 1-micron spherical sail shell and a thin-film payload. The work also probes the characteristics of aerographite under laser beaming conditions, and goes on to examine how it might be deployed in futuristic manned interstellar ‘arks.’ You can see Matloff’s presentation at Montreal here.

Aerographite’s visible photon absorption approaches 100 percent, with high tensile strength and an extremely high melting point. Matloff and Meany’s research involves a hypothetical sail with maximum operational temperature of 3,500 K and a payload mass that is one-tenth of the sail’s. For the purposes of their calculations, they lower the sail’s absorptivity to sunlight to a perhaps more realistic 0.9. Here Matloff’s experience in graphene sails comes in handy, allowing him to use the same analytical tools he and colleague Giovanni Vulpetti have worked out over years of solar sail analysis. Of particular note is the ‘lightness factor,’ which measures solar radiation against acceleration, and which for aerographite works out to an exceptionally high value.

An aerographite sail, in other words, is extremely efficient at converting sunlight into acceleration. The numbers are striking in comparison to previous estimates for solar sailing (as opposed to beaming) technologies. The performance figures in the table below are for an interstellar probe whose sail is unfurled at perihelion during a close solar approach. If you check the perihelion figures used for the analysis, you’ll see that the 0.04 AU figure matches the closest approach of an existing spacecraft, the Parker Solar Probe. And it turns out that 0.06 AU is close to the closest perihelion distance assumed for a beryllium sail. Matloff’s previous analysis of graphene (in a 2014 paper) had assumed a 0.1 AU perihelion for a graphene sail in the same kind of mission.

Our probe reaches Proxima Centauri within a millennium for all cases, with the 0.04 AU perihelion probe cutting the travel time to two centuries, a striking figure for a solar sail. The further good news is that according to these calculations, the aerographite at no point exceeds its melting point. Note the huge peak acceleration for the 0.04 AU perihelion pass: 319 g! A sail that makes it through the perihelion pass at 0.04 AU achieves an interstellar cruise velocity of roughly 0.02 c, which we can then stack up against a laser-launched sail along the lines of what Breakthrough Starshot envisions.

Here we run into trouble. From the paper:

It is not clear that an aerographite sail could withstand the enormous accelerations necessary to propel a Project Starshot terrestrial-launched laser-photon sail. Also, such a sail must either have an appropriate curvature to remain within the beam because the beam source moves with Earth’s rotation or be implanted with an appropriate diffraction pattern to optically simulate an appropriately curved sail surface. Also, because aerographite is absorptive rather than reflective, the enormous required beam power on the sail to achieve an ~0.2c interstellar cruise velocity might be fatal.

Which is why Matloff and Meany studied the effects of a sail powered by the beam from a space-based laser array rather than a terrestrial one, using a 100 meter sail for the analysis. I will send you to the paper (or the video) for the details of these calculations, but a laser transmitter of approximately 1.8 kilometers is modeled, with the Sun-orbiting laser at 1 AU from the Sun. Here the craft achieves a velocity of 0.033c given the constraints applied to the beaming technology, which the authors note may be fewer than those imposed on the Starshot array. Indeed:

Constructing sail, sunlight-collection optics and the laser/transmitter are challenging as is the necessity of keeping the sail within the beam during the ~3-hour acceleration run. But these challenges are considerably less than is the case for the Project Starshot relativistic-velocity sails accelerated by a terrestrial laser array.

Those who know Greg Matloff’s work know how he rejoices in stretching ideas out to their maximum potential, much in the mode of Robert Forward. Thus it’s no surprise that the next idea considered here is an aerographite sail capable of carrying humans aboard an interstellar ark. That’s a discussion in itself, and so is the question of the best path forward for aerographite research, two subjects I’ll be taking up in the next post.

The paper is Matloff & Meany, ”Aerographite: A Candidate Material for Interstellar Photon Sailing,” submitted to JBIS and ultimately to be published as part of the proceedings of the Interstellar Research Group’s 2023 symposium. The Heller, Anglada-Escudé, Hippke & Kervella paper is “Low-cost precursor of an interstellar mission,” Astronomy & Astrophysics Vol. 641 (September 2020), A45 (abstract).

Braking at Centauri: A Bound Orbit at Proxima?

One of the great problems of lightsail concepts for interstellar flight is the need to decelerate. Here I’m using lightsail as opposed to ‘solar sail’ in the emerging consensus that a solar sail is one that reflects light from our star, and is thus usable within the Solar System out to about 5 AU, where we deal with the diminishment of photon pressure with distance. Or we could use the Sun with a close solar pass to sling a solar sail outbound on an interstellar trajectory, acknowledging that once our trajectory has been altered and cruise velocity obtained, we might as well stow the now useless sail. Perhaps we could use it for shielding in the interstellar medium or some such.

A lightsail in today’s parlance defines a sail that is assumed to work with a beamed power source, as with the laser array envisioned by Breakthrough Starshot. With such an array, whether on Earth or in space, we can forgo the perihelion pass and simply bring our beam to bear on the sail, reaching much higher velocities. Of the various materials suggested for sails in recent times, graphene and aerographite have emerged as prime candidates, both under discussion at the recent Montreal symposium of the Interstellar Research Group. And that problem of deceleration remains.

Is a flyby sufficient when the target is not a nearby planet but a distant star? We accepted flybys of the gas giants as part of the Voyager package because we had never seen these worlds close up, and were rewarded with images and data that were huge steps forward in our understanding of the local planetary environment. But an interstellar flyby is challenging because at the speeds we need to reach to make the crossing in a reasonable amount of time, we would blow through our destination system in a matter of hours, and past any planet of interest in perhaps a matter of minutes.

Robert Forward’s ingenious ‘staged’ lightsail got around the problem by using an Earth-based laser to illuminate one part of the now separated sail ring, beaming that energy back to the trailing part of the sail affixed to the payload and allowing it to decelerate. Similar contortions could divide the sail again to make it possible to establish a return trajectory to Earth once exploration of the distant stellar system was complete. We can also consider using magsail concepts to decelerate, or perhaps the incident light from a bright target star could allow sufficient energy to brake against.

Image: Forward’s lightsail separating at the beginning of its deceleration phase. Laser sailing may turn out to be the best way to the stars, provided we can work out the enormous technical challenges of managing the outbound beam. Or will we master fusion first? Credit: R.L. Forward.

But time is ever a factor, because you want to reach your target quickly, while at the same time, if you approach it too fast, you’re incapable of creating the needed deceleration. Moreover, what is your target? A bright star gives you options for deceleration if you approach at high velocity that are lacking from, say, a red dwarf star like Proxima Centauri, where the closest terrestrial-class world we know is in what appears to be a habitable zone orbit. In Montreal, René Heller (Max Planck Institute for Solar System Research), a familiar name in these pages, laid out the equations for a concept he has been developing for several years, a mission that could use not only the light of Proxima itself but from Centauri A and B to create a deceleration opportunity. You can follow Heller’s presentation at Montreal here.

Remember what we’re dealing with here. We have two stars in the central binary, Centauri A (G-class) and Centauri B (K-class), with the M-class dwarf Proxima Centauri about 13000 AU distant. Centauri A and B are close – their distance as they orbit around a common barycenter varies from 35.6 AU to 11.2 AU. These are distances in Solar System range, meaning that 35.6 AU is roughly the orbit of Neptune, while 11.2 AU is close to Saturn distance. Interesting visual effects in the skies of any planet there.

Image: Orbital plot of Proxima Centauri showing its position with respect to Alpha Centauri over the coming millennia (graduations are in thousands of years). The large number of background stars is due to the fact that Proxima Cen is located very close to the plane of the Milky Way. Proxima’s orbital relation to the central stars becomes profoundly important in the calculations Heller and team make here. Credit: P. Kervella (CNRS/U. of Chile/Observatoire de Paris/LESIA), ESO/Digitized Sky Survey 2, D. De Martin/M. Zamani.

Using a target star for deceleration by braking against incident photons has been studied extensively, especially in recent years by the Breakthrough Starship team, where the question of how its tiny sailcraft could slow from 20 percent of the speed of light to allow longer time at target is obviously significant. Deceleration into a bound orbit at Proxima would be, of course, ideal but it turns out to be impossible given the faint photon pressure Proxima can produce. Investing decades of research and 20 years of travel time is hardly efficient if time in the system is measured in minutes.

In fact, to use photon pressure from Proxima Centauri, whose luminosity is 0.0017 that of the Sun, would require approaching the star so slowly to decelerate into a bound orbit that the journey would take thousands of years. Hence Heller’s notion of using the combined photon pressure and gravitational influences of Centauri A and B to work deceleration through a carefully chosen trajectory. In other words, approach A, begin deceleration, move to B and repeat, then emerge on course outbound to Proxima, where you’re now slow enough to use its own photons to enter the system and stay.

Working with Michael Hippke (Max Planck Institute for Solar System Research, Göttingen) and Pierre Kervella (CNRS/Universidad de Chile), Heller has refined the maximum speed that can be achieved on the approach into Alpha Centauri A to make all this happen: 16900 kilometers per second. If we launch in 2035, we arrive at Centauri A in 2092, with arrival at Centauri B roughly six days later and, finally, arrival at Proxima Centauri for operations there in a further 46 years. That launch time is not arbitrary. Heller chose 2035 because he needs Centauri A and B to be in precise alignment to allow the gravitational and photon braking effects to work their magic.

So we have backed away from Starshot’s goal of 20 percent of lightspeed to a more sedate 5.6 percent, but with the advantage (if we are patient enough) of putting our payload into the Proxima Centauri system for operations there rather than simply flying through it at high velocity. We also get a glimpse of the systems at both Centauri A and B. I wrote about the original Heller and Hippke paper on this back in 2017 and followed that up with Proxima Mission: Fine-Tuning the Photogravitational Assist. I return to the concept now because Heller’s presentation contrasts nicely with the Helicity fusion work we looked at in the previous post. There, the need for fusion to fly large payloads and decelerate into a target was a key driver for work on an in-space fusion engine.

Interstellar studies works, though, through multiple channels, as it must. Pursuing fusion in a flight-capable package is obviously a worthy goal, but so is exploring the beamed energy option in all its manifestations. I note that Helicity cites a travel time to Proxima Centauri in the range of 117 years, which compares with Heller and company’s now fine-tuned transit into a bound orbit at Proxima of 121 years. The difference, of course, is that Helicity can envision launching a substantially larger payload.

Clearly the pressure is on fusion to deliver, if we can make that happen. But the fact that we have gone from interstellar flight times thought to involve thousands of years to a figure of just over a century in the past few decades of research is heartening. No one said this would be easy, but I think Robert Forward would revel in the thought that we’re driving the numbers down for a variety of intriguing propulsion options.

The paper René Heller drew from in the Montreal presentation is Heller, Hippke & Kervella, “Optimized Trajectories to the Nearest Stars Using Lightweight High-velocity Photon Sails,” Astronomical Journal Vol. 154 No. 3 (29 August 2017), 115. Full text.