Small Planets Confirm Kepler’s Capabilities

The planetary system around Kepler-37, some 210 light years from Earth in the constellation Lyra, had its place in the media spotlight yesterday, although it will surely be a brief one. But it's heartening to see the quickening interest in exoplanets that each new discovery brings. Will the interest continue? In the Apollo days, public enthusiasm reached a frenzy as we moved toward the first lunar landings, then plummeted. What the media see as the big event in exoplanetary science is the discovery of a terrestrial world around a star like the Sun. Let's hope there is no similar letdown afterwards. After all, we're getting close, and discoveries like those announced yesterday remind us that Kepler can find very small worlds indeed. Kepler-37b lays claim to being the smallest planet yet found around a star similar to the Sun, similar in this case meaning a G-class star with a radius about three-quarter's of the Sun's. The new planet is just a bit larger than our Moon, as the image...

read more

After Huntsville, a Red Dwarf Bonanza

Returning from Huntsville after the Tennessee Valley Interstellar Workshop, I was catching up on emails at the airport when the latest news about exoplanets and red dwarfs popped up on CNN. It was heartening to look around the Huntsville airport and see that people who had been reading or using their computers were all looking up at the screen and following the CNN story, which was no more than a thirty second summary. The interest in exoplanets is out there and may bode good things for public engagement in space matters. At least let’s hope so. The workshop was a great success, and congratulations are owed to Les Johnson, Robert Kennedy, Eric Hughes and the entire team that made this happen (a special nod to Martha Knowles and Yohon Lo!). This morning I want to focus on the exoplanet news as a way of getting back on schedule, but tomorrow I’ll start going through my notes and talking about the Huntsville gathering. I’m hoping to have several articles in coming weeks from...

read more

TW Hydrae: An Infant Planetary System Analyzed

You have to like the attitude of Thomas Henning (Max-Planck-Institut für Astronomie). The scientist is a member of a team of astronomers whose recent work on planet formation around TW Hydrae was announced this afternoon. Their work used data from ESA's Herschel space observatory, which has the sensitivity at the needed wavelengths for scanning TW Hydrae's protoplanetary disk, along with the capability of taking spectra for the telltale molecules they were looking for. But getting observing time on a mission like Herschel is not easy and funding committees expect results, a fact that didn't daunt the researcher. Says Henning, "If there's no chance your project can fail, you're probably not doing very interesting science. TW Hydrae is a good example of how a calculated scientific gamble can pay off." I would guess the relevant powers that be are happy with this team's gamble. The situation is this: TW Hydrae is a young star of about 0.6 Solar masses some 176 light years away. The...

read more

Explaining Retrograde Orbits

While radial velocity and transit methods seem to get most of the headlines in exoplanet work, there are times when direct imaging can clarify things found by the other techniques. A case in point is the HAT-P-7 planetary system some 1000 light years from Earth in the constellation Cygnus. HAT-P-7b was interesting enough to begin with given its retrograde orbit around the primary (meaning its orbit was opposite to the spin of its star). Learning how a planet can emerge in a retrograde orbit demands learning more about the system at large, which is why scientists from the University of Tokyo began taking high contrast images of the HAT-P-7 system. It had been Norio Narita (National Astronomical Observatory of Japan) who, in 2008, discovered evidence of HAT-P-7b’s retrograde orbit. Narita’s team has now used adaptive optics at the Subaru Telescope to measure the proper motion of what turns out to be a small companion star now designated HAT-P-7B. The team was also able to confirm a...

read more

Assessing Exomoon Habitability

Yesterday's post on exomoons and their possibilities as abodes for life leads naturally to new work from René Heller (Leibniz Institute for Astrophysics, Potsdam) and Rory Barnes (University of Washington). We're finding planets much larger and more massive than Earth in the habitable zone, as the recent findings of the Planet Hunters project attest. What can we say about the habitability of any large moons these planets may have? In their paper, Heller and Barnes look at the issues that separate exomoon habitability from habitability on an exoplanet itself. If Earth-sized satellites of giant planets exist, they may have certain advantages over terrestrial planets in the same orbit, depending on the host star. We know that M-class dwarfs are by far the most common kind of star in the galaxy, and that habitable zone planets around one of these will probably be tidally locked, with one hemisphere permanently facing the star and the other in permanent darkness. Extreme weather...

read more

Gas Giants in the Habitable Zone

Because the sky is full of surprises, we can’t afford to be too doctrinaire about what tomorrow’s discovery might be. After all, ‘hot Jupiters’ were considered wildly unlikely by all but a few, and even here in the Solar System, probes like our Voyagers have turned up one startling thing after another -- volcanoes on Io were predicted just before Voyager arrived, but who thought we'd actually see them in the act of erupting? So I don’t think we can rule out the idea of habitable moons around a gas giant in the habitable zone, but there are reasons to question how numerous they would be. We’ve had this discussion before on Centauri Dreams, and while I love the idea of a huge 'Jupiter' hanging in the sky of a verdant, life-bearing planet, there are some factors that argue against it, as reader FrankH pointed out recently. One problem is that moons around a gas giant will probably be made largely of ice and rock, because the planet itself would have formed beyond the snow line and...

read more

Earth-Sized Planets Widespread in Galaxy

Plenty of interesting news is coming out of the American Astronomical Society meeting in Long Beach CA, enough that I'll want to spread our look at it out over the next few days. I want to start with Geoff Marcy's investigations with grad student Erik Petigura at UC-Berkeley, the two working in tandem with Andrew Howard (University of Hawaii) on the question of Earth-sized planets and their distribution in the galaxy. But I can't help noting before I begin how science fictional all these exoplanets are starting to seem as each day brings a new paper or announcement. For me, science fiction has always been as much about landscape as it is about science, and exoplanets are the ultimate exercise in imagining exotic places. When exoplanet announcements were still new and we had only a small catalog of these worlds, I would find myself pondering each and thinking about what it would be like to orbit one, or stand on it. Now we're getting hard data on potentially habitable places that...

read more

Planets Everywhere You Turn

Exactly what kind of planets can form around M-class dwarf stars is a major issue. After all, these stars, comprising 70 percent or more of the stars in the galaxy, are far more common than stars like the G-class Sun. About 5500 of the 160,000 stars the Kepler mission is looking at are M-dwarfs, and of these, 66 had been found to show at least one planetary transit signal at the time a new paper on M-dwarf planets was in preparation. That paper, the work of John Johnson and postdoc Jonathan Swift (Caltech) and team, homes in on the Kepler-32 system, whose five transiting planets offer a chance to study planet formation and frequency around such stars. Kepler-32 is about half as massive as the Sun and has half its radius, with about 5 percent of its luminosity. The planets here have radii that range from 0.8 to 2.7 times that of the Earth, all of them orbiting within about a tenth of an astronomical unit from the star, a distance that is about a third of the radius of Mercury's orbit...

read more

Planet Discovery Through Disk Structure

As the number of confirmed planets and planet candidates has grown, we've gone through a variety of techniques for exoplanet hunting, as Michael Lemonick's new book Mirror Earth: The Search for Our Planet's Twin (Walker & Co., 2012) makes clear. I'm only a third of the way into the book but I bring it up because it's germane to today's discussion in two ways. The first is purely administrative. Readers of Centauri Dreams are used to seeing information about the book I'm reading on the front page, but as many emails have reminded me, lately it's been absent. What's happening is this: The software I use to display the book cover and progress bar is no longer being maintained by its creator, and the program has become flaky. I've discovered more and more that certain books will not display properly, so that although I can enter them in the configuration file, nothing shows up in the sidebar on the home page. As a result, I'm searching for alternatives that will display titles like...

read more

Alpha Centauri in Perspective

In his new article on Alpha Centauri in Astronomy & Geophysics, Martin Beech (Campion College, University of Regina) noted that the Alpha Centauri stars seem to go through waves of scientific interest. Beech used Google's Ngram Viewer to look for references to the system in both the scientific literature as well as general magazines and newspapers, finding that there is a 30-year interval between peaks of interest. The figure is suspiciously generational, and Beech wonders whether it reflects an awakening of interest in this nearby system as each generation of scientists and publishers arises. I mentioned on Christmas Eve that the Beech paper was a real gift for the holidays, and for those of us who try to track developments about Alpha Centauri, it certainly is, drawing together recent work and commenting with care on the findings. The big issue for now is the existence of planets around these stars, a question Centauri B b will begin to answer if it can be confirmed. Everyone from...

read more

Tightly Spaced Habitable Zone Candidates

We saw yesterday how a newly refined radial velocity technique allowed researchers to identify five planet candidates around the nearby star Tau Ceti. The latter has long held fascination for the exoplanet minded because it’s a G-class star not all that different from the Sun, and one of the planets around it -- if confirmed -- appears to be in its habitable zone. But smaller stars remain much in the news as well, as witness Gl 667C, a red dwarf (M-class) star in a triple system that also contains two closely spaced K-class stars with a semimajor axis of 1.82 AU. M-class stars offer a lot to planet hunters, as new work using the HARPS spectrograph at La Silla is making clear. For one thing, a planet of a given size induces more radial velocity variation around a low-mass star than around a larger one, making the planet easier to spot. For another, red dwarfs are dimmer than G and K-class stars, with a habitable zone much closer to the star. Here again we get a larger radial velocity...

read more

Tau Ceti’s Five Planet Candidates

I discovered while trying to get to my copy of Stephen Dole's Habitable Planets for Man that my office was so choked with stacks of books mixing with Christmas gifts about to be wrapped that I couldn't reach the necessary shelf. Thus space studies end inevitably in office cleaning, the only benefit of which is that there is now a clear path to the most distant of the bookshelves and Dole's book (this is the 1964 edition written with Isaac Asimov) now sits before me. I was feeling nostalgic and wanted the Dole volume to remind myself of my early enthusiasm for the nearby star Tau Ceti. The news that five planet candidates have been identified around this star -- one of them in the habitable zone -- brings back the fascination that was piqued when Frank Drake made Tau Ceti one of his two targets in 1960's Project Ozma, a search for extraterrestrial radio signals from Green Bank, WV. And in fact what I found in Dole's book on the subject of Tau Ceti was mostly about Drake's interest in...

read more

Widening the Habitable Zone

Finding a way to extend the classical habitable zone, where liquid water can exist on the surface of a planet, is a project of obvious astrobiological significance. Now a team of astronomers and geologists from Ohio State University is making the case that their sample of eight stars shows evidence for just such an extension. The stars in question, drawn from a dataset created by the High Accuracy Radial Velocity Planet Searcher spectrometer at the European Southern Observatory in Chile, were selected because they match up well with the Sun in terms of size, age and composition. Seven of the eight, however, show signs of much more thorium than found in our star. It's an interesting result, as seen in this Ohio State news release. The slow radioactive decay of elements like thorium, potassium and uranium, all found in the Earth's mantle, helps to heat the planet. These are elements present at planetary formation and, according to Ohio State's Wendy Panero, they are involved in...

read more

Brown Dwarf Results Promising for Planets

Do planets form easily around brown dwarf stars? Are they actually common? We're getting a glimpse of the possibilities in new work at the Atacama Large Millimeter/submillimeter Array (ALMA), where a brown dwarf known as ISO-Oph 102 (also called Rho-Oph 102) is under investigation. In most respects it seems like a fairly run-of-the-mill brown dwarf, about 60 times the mass of Jupiter and thus unable to ignite hydrogen fusion. It's also tiny, at 0.06 times the mass of the Sun, a dim object in the constellation of Ophiuchus. The work suggests that in the outer regions of a dusty disk surrounding Rho-Oph 102 there exist the same kind of millimeter-sized solid dust grains found around the disks of young stars. That's intriguing because astronomers have thought that earlier finer grains would not be able to grow into these larger particles in the cold, sparse disks assumed to be around brown dwarfs. Those that did form were thought to disappear quickly toward the inner disk, where they...

read more

On Debris Disks and Super-Earths

The red dwarf Gliese 581 continues to draw the eye, whether or not the putative world Gl 581 g is there or not. The latter, whose existence has been the subject of controversy, would occupy a tantalizing place in its star’s habitable zone, though in some models the planet Gl 581 d might also skirt the outer edge of the HZ. Now we have interesting new work from the European Space Agency’s Herschel space observatory announcing that Gl 581, along with the G-class star 61 Vir, another nearby planetary system, shows the the signature of cold dust at -200 degrees Celsius. It’s an abundant signature, too, meaning that both these systems must have ten times the number of comets found in our own Solar System’s Kuiper Belt. The two papers on this work grow out of a program called, fittingly, DEBRIS (Disc Emission via a Bias-free Reconnaissance in the Infrared/Sub-mm). What the researchers working these data are suggesting is that the lack of a large gas giant in the two systems may relate to...

read more

Life Around Cooling Stars

Red dwarfs offer fascinating astrobiological speculation, allowing us to ponder whether flare activity or tidal lock could be the game-changer that prevents life from developing around them. We have much to learn on that score, but new work from Rory Barnes (University of Washington) and René Heller (Leibniz Institute for Astrophysics, Potsdam) looks beyond red dwarfs to brown and white dwarfs and their own prospects for life. The prognosis: Poor. Planets around these objects, the researchers say, would have an early history that could remove surface water. The problem is nuclear burning and the lack thereof. Yes, both brown and white dwarfs could support a habitable zone, but what sets them apart from red dwarfs is that they cool slowly and continuously, meaning their habitable zones shrink inward toward the star. Imagine, Barnes and Heller say, a planet that starts out as a Venus-like world beset with a runaway greenhouse effect. Eventually the habitable zone contracts enough to...

read more

On Super-Earths and Alpha Centauri

The discovery of Centauri B b, a small planet with a mass similar to Earth, continues to percolate in the news even if the initial buzz of discovery has worn off. Science News gives the new world a look in a recent article, noting the fact that with an orbital period of 3.236 days, this is not a place even remotely likely for life. Surface temperatures in the range of 1200 degrees Celsius are formidable obstacles, but of course the good news is the potential for other planets around Centauri B and, indeed, around its larger companion. Centauri A may well host interesting worlds, but it's a tough study because it's given to the kind of stellar activity that can more readily mask a planetary signature than the quieter Centauri B. Even so, we can imagine the possibility of two planetary systems in close proximity, a scenario that would surely propel any technological civilization around one to investigate the other. We don't have the driver for spaceflight in our system that an...

read more

Exomoons: A Direct Imaging Possibility

It's good to see that David Kipping's work on exomoons is back in the popular press in the form of A Harvest of New Moons, an article in The Economist. Based at the Harvard-Smithsonian Center for Astrophysics, Kipping's Hunt for Exomoons with Kepler (HEK) culls Kepler data and massages the information, looking for the tug of large moons on transiting exoplanets. The basic method will by now be familiar to Centauri Dreams readers: Dr Kipping's technique relies on the fact that moons do not simply revolve around their host planets; planets also revolve around their moons—or, rather, the two bodies both revolve around their common centre of mass. If a planet is large and its moon small the distinction is trivial. But if the planet is small and the moon is large, it is not. In the case of Earth and its moon, for example, the common centre lies only around 1,700km (1,100 miles) beneath the Earth's surface. Someone looking from afar at the movement of Earth would thus be able to...

read more

Possible Habitable World in a Six-Planet System

At 42 light years from Earth, the star HD 40307 is reasonably within the Sun’s neighborhood, so the news of a potentially habitable planet there catches the eye. HD 40307 is a K-class dwarf, one previously known to be orbited by three super-Earths -- with masses between the Earth and Neptune -- that are too close to the star to support liquid water on the surface. Now we have the discovery, announced in a new paper in Astronomy & Astrophysics, of three more super-Earth candidates found by digging into data from HARPS (the High Accuracy Radial Velocity Planet Searcher) and HIRES (the High Resolution Echelle Spectrograph). Mikko Tuomi (University of Hertfordshire) and team put a new software tool called HARPS-TERRA to work on the archival data that allowed them greater precision in filtering out false positives from stellar activity. Says Tuomi: "We pioneered new data analysis techniques including the use of the wavelength as a filter to reduce the influence of activity on the signal...

read more

Alpha Centauri and the New Astronomy

For much longer than the nine years Centauri Dreams has been in existence, I've been waiting for the announcement of a planetary discovery around Centauri B. And I'm delighted to turn the first announcement on this site over to Lee Billings, one of the most gifted science writers of our time (and author of a highly regarded piece on the Centauri stars called The Long Shot). Lee puts the find into the broader context of exoplanet research as we turn our gaze to the nearest stars, those that would be the first targets of any future interstellar probes. On Thursday I'll follow up with specifics, digging into the discovery paper with more on the planet itself and the reasons why Centauri B was a better target than nearby Centauri A. I'll also be offering my own take on the significance of the find, which I think is considerable. by Lee Billings For much of the past century, astronomy has been consumed by a quest to gaze ever deeper out in space and time, in pursuit of the universe's...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives