Rama is a name that resonates with science fiction fans who remember Arthur C. Clarke's wonderful Rendezvous with Rama (1973). The novel depicts a 50-kilometer starship that enters the Solar System and is intercepted by a human crew, finding remarkable and enigmatic things that I will leave undescribed for the pleasure of those who haven't yet read the book. Suffice it to say that among Clarke's many fine novels, Rendezvous with Rama is, along with The City and the Stars, a personal favorite. What a company called Made in Space Inc. has in mind is something different than Clarke's vision, though it too evokes names from the past, as we'll shortly see. Based in Mountain View, CA the company is embarking on an attempt to turn asteroids into small spacecraft that can move themselves to new trajectories. RAMA in this case stands for Reconstituting Asteroids into Mechanical Automata, and it proceeds by putting 'Seed Craft' on asteroids that will use materials found on the surface. This is...
The Use of Extraterrestrial Resources to Facilitate Space Science and Exploration
We get to the stars one step at a time, or as the ever insightful Lao Tzu put it long ago, ?"You accomplish the great task by a series of small acts." Right now, of course, many of the necessary ‘acts’ seem anything but small, but as Ian Crawford explains below, they’re a necessary part of building up the kind of space economy that will result in a true infrastructure, one that can sustain the exploration of space at the outskirts of our own system and beyond. Dr. Crawford is Professor of Planetary Science and Astrobiology in the Department of Earth and Planetary Sciences, Birkbeck College, University of London. Today he brings us a report on a discussion of these matters at the Royal Astronomical Society earlier this year. By Ian A. Crawford There is increasing interest in the possibility of using the energy and material resources of the solar system to build a space economy, and in recent years a number of private companies have been established with the stated aim of developing...
Hot Jupiters: The Missing Water Vapor
In late 2015, an international team led by David Sing (University of Exeter, UK) studied ten 'hot Jupiters' to try to figure out why some of these planets have less water in their atmospheres than expected from earlier modeling. Sing and company were working with transmission spectroscopy, possible when a planet transits its star and starlight is filtered by the planet's atmosphere. The team used data from the Hubble instrument as well as the Spitzer Space Telescope, covering wavelengths ranging from the optical into the infrared. A cloudy planet appears larger in visible light than in infrared, the difference in radius at the two wavelengths being used to show whether the atmosphere is cloudy or clear. The result, published in Nature, concluded that there was a correlation between hazy and cloudy atmospheres and scant detection of water. In other words, clouds were simply hiding the expected water vapor, and dry hot Jupiters were ruled out. It's an important finding because dry hot...
In Search of Carbon Planets
The first generation of stars in the universe began to shine in an era when chemical elements like carbon and oxygen were not available. It was the explosion of these early stars in supernovae that began the process of enrichment, with heavier elements fused in their cores now spreading into the cosmos. Lower-mass stars and planetary systems began to appear as heavier elements could form the needed dust grains to build planetary cores. Avi Loeb (Harvard-Smithsonian Center for Astrophysics) and grad student Natalie Mashian have been looking at a particular class of ancient stars called carbon-enhanced metal-poor (CEMP) stars. Here the level of iron is about one hundred-thousandth as high as our Sun, a clear marker that these stars formed before heavy elements were widely distributed. These stars are interesting because despite their lack of iron and other heavy elements in comparison to the Sun, they are rich in carbon, an excess that leads to the possibility of planets forming around...
New Insights into Ceres’ Bright Spots
One reason for catching up with recent planetary science here in the Solar System is the upcoming arrival of Juno, which enters into polar orbit around Jupiter on July 4. Juno's arrival is a reminder that the past year has been packed with interesting news from places like Pluto/Charon (New Horizons), Comet 67P/Churyumov-Gerasimenko (Rosetta), and the topic of today's post, the intriguing dwarf planet Ceres, as studied by the orbiting Dawn spacecraft. But the recent Ceres news hasn't just involved Dawn. Paolo Molaro (INAF-Trieste Astronomical Observatory) had led a study looking at the bright spots Dawn found upon approaching Ceres last year. The data Molaro and team drew on came from the European Southern Observatory's 3.6-meter instrument at La Silla and its HARPS spectrograph, which have shown us not only the motion of the bright spots as Ceres rotates but also variations that indicate volatile material within them. The suggestion is that this material evaporates when exposed to...
Looking Back: Pluto’s Twilight Landscape
Friday's look at the possible composition of Pluto's Sputnik Planum took me into a deep enough dive on the two papers -- Pluto gets my full attention! -- that I ran out of time. I had planned to include the images below in that post, but we can do that this morning as a reminder that New Horizons shows no signs of running out of data. What caught my eye here was the possible presence of a cloud, which you can see at the top right of the left image, and in the top inset image. The wispy structure is tens of kilometers across (the entire inset measures about 230 kilometers) and if it is a cloud, it's the only one we've yet picked out of the New Horizons imagery. But if you consider the rest of the image, it would make sense that we could see a cloud here -- notice how the haze layers are brightened by the sunlight that grazes Pluto's surface at a low angle. Also in the top right inset, the southern parts of Sputnik Planum's nitrogen ice fields show up (click the image to enlarge),...
Explaining Sputnik Planum
It's been a week spent catching up with space mission news, focusing on Rosetta, Juno and today, New Horizons. Usually I ponder what I'm going to write each day on Centauri Dreams while I'm having breakfast, a quiet time to reflect on recent events. And if Jay Melosh (Purdue University) is to be believed, I might have taken inspiration from the dish of oatmeal sitting in front of me when it comes to Pluto. Because Melosh and grad student Alex Trowbridge led recent research that may explain what we see at Sputnik Planum. A bit of background before I return to that bowl of oatmeal. We've seen that Sputnik Planum has an unusual appearance, visible in the photo below, that shows patterned polygons. One way of explaining this is to invoke icebergs floating on a sea of nitrogen ice. Melosh and Trowbridge believe the polygons could be what are called Rayleigh-Bénard convection cells, which flag convection that occurs in a fluid that is being heated from below. Says Melosh: "Imagine...
Radio Map of Jupiter Anticipates Juno Findings
Interesting news about Jupiter this morning even as the Juno spacecraft crosses into the realm of Jupiter's gravity. It was six days ago that Juno made the transition into Jupiter space, where the gravitational influence of Jupiter now dominates over all other celestial bodies. And it will be on July 4 of this year that Juno performs a 35-minute burn of its main engine, imparting a 542 meters per second mean change in velocity to the spacecraft for orbital insertion. The spacecraft's 37 flybys will close to within 5000 kilometers of the cloud tops. I only wish Poul Anderson could be alive to see some of the imagery. I always think of him in relation to Jupiter because of his stunning 1957 story "Call Me Joe," describing the exploration of the planet by remote-controlled life forms (available in Anderson's collection The Dark Between the Stars as well as various science fiction anthologies). Image: Launched in 2011, the Juno spacecraft will arrive at Jupiter in 2016 to study the giant...
Cometary Breakup and Reassembly
Yesterday's look at organic compounds on Comet 67P/Churyumov-Gerasimenko needs to be augmented today by a just released study of the comet with implications for how all comets evolve. But first, a renewed pointer to the Kickstarter campaign for KIC 8462852, the unusual star whose light curves continue to baffle astronomers. Please consider contributing to the project, which would raise enough money ($100,000) to support a year of observations. We're about halfway through the campaign but not yet at the halfway point in funds. Have a look at the information provided on the Kickstarter page, or in my essay A Kickstarter Campaign for KIC 8462852, which also has the relevant links. We know the light curves of 'Tabby's Star' are not periodic, so we need continuous monitoring to gain more data on what may be happening there. If we can raise the funds, the Las Cumbres Observatory Global Telescope Network, already supporting the project, can give us the multi-wavelength observations we need....
Rosetta’s Comet: Ingredients for Life
The thought that water and organic molecules might have arrived on the early Earth from the impacts of comets and asteroids has long been provocative, and our missions to nearby comets are now paying off with insights into the possibility. It was back in 2004 that the Stardust mission flew past Comet Wild 2, collecting dust samples that showed traces of the amino acid glycine. Possible contamination of the samples during their analysis left the question open, however. Now we have news that the European Space Agency's Rosetta mission has also found glycine -- a significant organic compound that appears in proteins -- at Comet 67P/Churyumov-Gerasimenko. The spacecraft's ROSINA instrument (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) detected glycine in October of 2014, with later measurements taken during the August 2015 perihelion event, where cometary outgassing was at its peak. Kathrin Altwegg (University of Bern), who led the study, calls this "...the first...
Kepler-62f: Models for Habitability
So often planets described as ‘potentially habitable’ turn out to be over-rated -- we look deeper into their composition and characteristics only to find that the likelihood of liquid water on the surface is slim. How to make more accurate calls on the matter of habitability? One way may be to combine orbital and atmospheric models, adjusting each with the known parameters of the planet in question. A new study does just that for the interesting world Kepler-62f. About 1200 light years from Earth in the direction of the constellation Lyra, Kepler-62f has a radius 40 percent larger than Earth’s, which puts it well below the 1.6 RE demarcation line that is increasingly thought to define the difference between Earth-like worlds and planets that are more like Neptune. We’re probably looking at a rocky planet here. It’s also a planet that orbits its K-class primary at a distance that could place it in the outer regions of the habitable zone (as defined, again, by the presence of liquid...
Interstellar Flight in Congressional Report
I hadn't planned the conjunction of the Breakthrough Starshot forum's opening here on Centauri Dreams and the interesting news out of the NASA budget for 2017, but some things just fall into your lap. In any case, what happened in Washington makes a nice follow-up to yesterday's post, considering that it calls up visions of fast probes to Alpha Centauri, and in a document coming out of the U.S. House of Representatives, of all things. As more than a few readers have noted, it's not often that we hear interstellar issues discussed in the halls of Congress. Call for a New Interstellar Study The specifics are that space-minded John Culberson (R-TX), who has championed space exploration with abandon, has made sure that NASA will look at the possibilities of interstellar travel. Culberson chairs the House of Representatives sub-panel in charge of NASA appropriations, and the call for interstellar study comes in a report that accompanies the bill establishing the agency's budget for the...
Breakthrough Starshot: ‘Challenges’ Forum Opens
Ever since coming back from the Breakthrough Discuss meeting in Palo Alto, I have been pondering the enormous issues the Breakthrough Starshot project will encounter. Getting a tiny spacecraft up to twenty percent of lightspeed is only the beginning of an effort that has to deal with power generation, a phased laser array of enormous strength and complexity, the miniaturization of critical components, lightsail integrity under thrust and much more. These topics were freely discussed in Palo Alto, and especially at the Yuri's Night party that Yuri Milner threw for the assembled conference goers. When I talked to Milner at the party, he suggested an idea that we have been working on ever since. In order to keep the discussion on the critical issues involving Breakthrough Starshot in front of the interstellar community, why not set up a linkage between the discussion areas of the Breakthrough site and Centauri Dreams? This site would maintain its usual structure and separate comments,...
Bradley Schaefer: Further Thoughts on the Dimming of KIC 8462852
Is the anomalous star KIC 8462852 undergoing a long-term dimming or not? We've looked at Bradley Schaefer's work on the star and the follow-ups disputing the idea from Michael Hippke and Daniel Angerhausen (NASA GSFC), with collaboration from Keivan Stassun and Michael Lund (both at Vanderbilt University) and LeHigh University's Joshua Pepper. Dr. Schaefer (Louisiana State University) believes the evidence for dimming is still strong, and in the post below explains why. He has also provided a link to a more detailed analysis with supporting graphs and figures for those who want to go still deeper (further information below). As we embark on the Kickstarter campaign to put 'Tabby's Star' in the sights of the Las Cumbres Observatory Global Telescope Network -- an important project to which I have contributed and hope you will as well -- we continue to monitor this evolving story. No matter how it turns out, the Kepler data are iron-clad, so the success of the Kickstarter campaign is...
A Kickstarter Campaign for KIC 8462852
If the star KIC 8462852 is on your mind -- and the lively and continuing comments threads on the topic in these pages suggest that it is -- you'll want to know about a new campaign to support further study. 'Tabby's Star,' as it is informally known (after Tabetha Boyajian, whose work at the Planet Hunters project brought the star into prominence), continues to vex astronomers with its unusual light curves. What is causing the star to dim so dramatically remains problematic, with suggestions ranging from comet swarms to extraterrestrial engineering. A Kickstarter project is now in the works to support further investigation, hoping to extend an effort that has already begun. Boyajian's team has initiated observations on the Las Cumbres Observatory Global Telescope Network, a privately run effort that maintains telescopes around the world to make sure an object can be examined continuously. Four years of Kepler data have shown us that the dips in the light curves from KIC 8462852 are...
Towards Producing Food in Space: ESA’s MELiSSA and NASA’s VEGGIE
Before we can go to the stars we'll need to build a robust infrastructure in our own Solar System. While most attention seems to be devoted to propulsion issues, I'm convinced that an equally critical question is how we can create and sustain closed-loop life support systems for such missions. Our point man on this is Ioannis Kokkinidis, who brings a rich background from his Master of Science in Agricultural Engineering (Agricultural University of Athens) and Mastère Spécialisé Systèmes d'informations localisées pour l'aménagement des territoires from AgroParisTech and AgroMontpellier, along with a PhD in Geospatial and Environmental Analysis from Virginia Tech. Here Dr. Kokkinidis discusses what has been done so far in the matter of growing foods in space, and takes us back to a mission that might have been, a manned flyby of Venus. As Ioannis notes, getting space foods up to the sumptuous standards of Greek cuisine will indeed be a challenge, but we're...
Looking for Life Around Red Giant Stars
I suppose the most famous fictional depiction of the Sun as it swells to red giant stage is in H. G. Wells’ The Time Machine, in a passage where the time traveler takes his device by greater and greater jumps into the remote future. This is heady stuff: I moved on a hundred years, and there was the same red sun–a little larger, a little duller–the same dying sea, the same chill air, and the same crowd of earthy crustacea creeping in and out among the green weed and the red rocks. And in the westward sky, I saw a curved pale line like a vast new moon. ‘So I travelled, stopping ever and again, in great strides of a thousand years or more, drawn on by the mystery of the earth’s fate, watching with a strange fascination the sun grow larger and duller in the westward sky, and the life of the old earth ebb away. At last, more than thirty million years hence, the huge red-hot dome of the sun had come to obscure nearly a tenth part of the darkling heavens. Wells would have had no real idea...
Moons of the Outer Dwarf Planets
Yesterday’s post on the dwarf planet 2007 OR10 brought comments asking why an object this large hasn’t yet been named. Actually it has been, but only briefly. It was Meg Schwamb, then a graduate student of Caltech’s Michael Brown, who discovered 2007 OR10, and Brown quickly gave it the nickname Snow White -- as the seventh dwarf Brown’s team had discovered, the name seemed made to order. What derailed the nickname was the realization that 2007 OR10 is not white but red, and as we saw yesterday, one of the darkest known Kuiper Belt objects. Schwamb herself was quoted in this JPL news release on the matter: “The names of Pluto-sized bodies each tell a story about the characteristics of their respective objects. In the past, we haven’t known enough about 2007 OR10 to give it a name that would do it justice. I think we’re coming to a point where we can give 2007 OR10 its rightful name.” We’ll see just what that rightful name is. Remember, too, that 2007 OR10 is now known to be just...
New Work on Dwarf Planet 2007 OR10
Although we always think of Kepler -- and its successor mission K2 -- as an exoplanet observatory, the spacecraft has also been put to work on objects much closer to home. Enter 2007 OR10, a dwarf planet that is currently about twice as distant from the Sun as Pluto. The Kepler instrument is, of course, fine-tuned for spotting the minute variations in light caused when a planet passes in front of a distant star. But that makes it an excellent tool for studying 2007 OR10, whose dim light and red color have proved difficult to parse by other instruments. Kepler, though, is not alone in this work. What we see is a useful collaboration between it and the European Space Agency's Herschel Space Observatory. Using archival data from the latter, researchers have been able to measure both the fraction of starlight absorbed and later re-radiated as heat (via Herschel) as well as the fraction of starlight reflected from 2007 OR10 via Kepler. K2, sensitive to minute changes in brightness, was...
Extraterrestrial First Contact in Space Protocols
As we move into the outer Solar System and beyond, the possibility exists that we may encounter an extraterrestrial species engaged in similar exploration. How we approach first contact has been a theme of science fiction for many years (Murray Leinster's 1945 story 'First Contact' is a classic treatment). In the essay below, Ken Wisian looks at how we can develop contact protocols to handle such a situation. A Major General in the US Air Force (now retired) with combat experience in Iraq, Afghanistan and the Balkans, Ken brings a perspective seasoned by command and a deep knowledge of military history to issues of confrontation and outcomes, building on our current rules of engagement to ask how we will manage an encounter with another civilization, one whose consequences would be momentous for our species. By Ken Wisian Ph.D Galactic Ventures LLC, Austin, Texas Abstract How do two ships approach each other in a first contact setting? When it happens it will be a pivotal moment for...