“Einstein would be beaming,” said National Science Foundation director France Córdova as she began this morning’s news conference announcing the discovery of gravitational waves. I can hardly disagree, because we have in this discovery yet another confirmation of the reality of General Relativity. Caltech’s Kip Thorne, who discussed black hole mergers way back in 1994 in his book Black Holes and Time Warps, said at the same news conference that Einstein must have been frustrated by the lack of available technologies to detect the gravitational waves his theory predicted, a lack that it took a century to remedy with the LIGO collaboration. Thorne believes that if he had been armed with the right tools, Einstein himself would have made the detection. But of course the tools weren’t there. Somehow that thought produced an odd echo of the very decade of General Relativity’s emergence, one that shows how much GR changed the nature of our view of the universe. It was in 1911, just four...
A Future We Can Choose
The very small may lead us to the very large. Payload sizes, for one thing, can be shrunk as we increasingly master the art of miniaturization, giving us far more bang for the buck. In that sense, we can think about tiny interstellar probes that may one day be sent, as Robert Freitas has envisioned, in waves of exploration, each of them no larger than a sewing needle, but armed with artificial intelligence and capable of swarm-like behavior. Mastering the tiny thus enables the longest of all journeys. But thinking about small payloads also makes me ponder much larger constructs. Suppose in a hundred years we can work at the atomic level to build structures out of the abundant raw material available in the asteroid or Kuiper belts. It's possible to imagine enormous arcologies of the kind discussed by Gerard O'Neill that may one day house substantial human populations. In this way nanotech opens the door to renovation in the realm of gigantic colony worlds. And if one of these colony...
Inside Rocky Exoplanets
We’ve gone from discovering the presence of exoplanets to studying their atmospheres by analyzing the spectra produced when a planet transits in front of its star. We’re even in the early stages of deducing weather patterns on some distant worlds. Now we’re looking at probing the inside of planets to learn whether their internal structure is something like that of the Earth. The work is led by Li Zeng (Harvard-Smithsonian Center for Astrophysics), whose team developed a computer model based on the Preliminary Reference Earth Model (PREM), the standard model for the Earth’s interior. Developed by Adam Dziewonski and Don L. Anderson for the International Association of Geodesy, PREM attempts to model average Earth properties as a function of radius. Zeng adjusted the model for differing masses and compositions and applied the revised version to six known rocky exoplanets with well understood characteristics. The work shows that rocky worlds should have a nickel/iron core that houses...
Probing the Interior of a Comet
Knowing what comets are made of -- dust and ice -- only begins to answer the mystery of what is inside them. A compact object with this composition should be heavier than water, but we know that many comets have densities much lower than that of water ice. The implication is that comets are porous, but what we'd still like to know is whether this porosity is the result of empty spaces inside the comet or an overall, homogeneous low-density structure. For answers, we turn to the European Space Agency's continuing Rosetta mission. In a new paper in Nature, Martin Pätzold (Rheinische Institut für Umweltforschung an der Universität zu Köln, Germany) and team have gone to work on the porosity question by analyzing Comet 67P/Churyumov-Gerasimenko, around which Rosetta travels. It's no surprise to find that 67P/Churyumov-Gerasimenko is a low-density object, but an examination of the comet's gravitational field shows that we can now rule out a cavernous interior. Image: These images of comet...
The Distant Thing Imagined
If there's one thing Pluto turned out to have beyond all expectation, it's geological activity. New Horizons is now showing us what researchers are calling 'hills of water ice' floating in a sea of frozen nitrogen, much like icebergs moving through our own Arctic Ocean. The isolated hills are thought to be fragments of the water ice in the surrounding upland regions. Measuring several kilometers across, they are found in Sputnik Planum, a plain within Pluto's 'heart.' Image: The image shows the inset in context next to a larger view that covers most of Pluto's encounter hemisphere. The inset was obtained by New Horizons' Multispectral Visible Imaging Camera (MVIC) instrument. North is up; illumination is from the top-left of the image. The image resolution is about 320 meters per pixel. The image measures a little over 500 kilometers long and about 340 kilometers wide. It was obtained at a range of approximately 16,000 kilometers from Pluto, about 12 minutes before New Horizons'...
Saturn’s Rings: Puzzling Mass Density Findings
Given that we have four planets in our Solar System with rings, it's a natural thought that if so-called Planet Nine does exist, it might likewise show a system of rings. After all, Caltech's Konstantin Batygin and Mike Brown are talking about a planet with a mass on the order of ten times that of the Earth. Neptune is about 17 Earth masses, while Uranus is 14.5 as massive. If Planet Nine is an ejected ice giant, perhaps it joins Uranus, Neptune, Jupiter and Saturn in having a ring system of its own, along with a thick atmosphere of hydrogen and helium. Of course, we have to discover Planet Nine first, a process that may take some time if, indeed, it is successful. Meanwhile, we have interesting developments in the Solar System's most intriguing ring system. As compared with those of other planets, Saturn's rings are visually stunning. The B ring is the brightest and most opaque of the planet's rings, but now we're finding out that brightness and opacity have little correlation with...
A New Look at the ‘Big Whack’
Somewhere a decade or so back in these pages a Centauri Dreams commenter described the event that formed our Moon as ‘the big whack.’ Although I hadn't run across it before, the phrase turns out to have been common parlance for what is now thought to be a massive collision between the Earth and an early planetesimal. But whatever the case, we know a bit more about the cataclysm thanks to new work out of UCLA, as reported in the journal Science. The impactor, which struck about 4.5 billion years ago, is commonly called Theia. So how do we analyze such a remote event? The key, as discussed in this UCLA news release, is oxygen, which makes up 90 percent of the volume of lunar rocks the team of geochemists studied, and 50 percent of their weight. Usefully, oxygen can manifest itself in various isotopes, the most common on Earth being O-16, meaning each atom holds eight protons and eight neutrons. Image: Light image of a lunar rock from the Apollo 17 mission. Credit: NASA. Heavier...
A Telescope Eight Times the Diameter of Earth
If you're looking for detailed imagery of a distant astronomical object, VLBI (Very Long Baseline Interferometry) can deliver the goods. As witness the image below, which the National Radio Astronomy Observatory (NRAO) is calling "the highest resolution astronomical image ever made." Here we see radio emission from a jet of particles moving close to the speed of light. The particles are being accelerated by a supermassive black hole at the core of the galaxy BL Lacertae, a highly variable 'active galaxy' some 900 million light years from the Earth. Image (click to enlarge): Signals from 15 ground-based radio telescopes, combined with data from the RadioAstron orbiting satellite, produced the highest resolution astronomical image ever made. Credit: Gomez, et al., Bill Saxton, NRAO/AUI/NSF. What fascinates me about this work is the technique. Very Long Baseline Interferometry works by collecting a signal at multiple radio telescopes, the distance between them being calculated from the...
New Pluto Imagery
Newly interpreted data from the New Horizons spacecraft tells us that Pluto has more water ice on its surface than we once thought. The image below tells the tale, a false-color view derived from observations by the Ralph/Linear Etalon Imaging Spectral Array (LEISA) instrument. Here we're at infrared wavelengths and can see areas showing the spectral signature of water ice. Note the sharp contrast between the left and right sides of the image below. Image: This false-color image is derived from observations in infrared light by the Ralph/Linear Etalon Imaging Spectral Array (LEISA) instrument. It is based on two LEISA scans of Pluto obtained on July 14, 2015, from a range of about 108,000 kilometers. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. The two scans, as this JHU/APL news release explains, were taken about fifteen minutes apart and merged into a 'data cube' -- a three-dimensional array covering the hemisphere New Horizons...
Starship Thinking
It's been awhile since I've seen Ian Crawford (Birkbeck College, London) -- I think we last talked at one of the 100 Year Starship events -- but I'm pleased to see his latest popular essay How to build a starship - and why we should start thinking about it now. A professor of planetary sciences and advocate of manned space exploration here in the Solar System, Crawford takes on the necessary task of acquainting a larger audience with something Robert Forward put forth as a maxim: 'Starflight is difficult and expensive, but not impossible.' Following decades of work on beamed sail technologies, antimatter and space tethers, Forward wrote that line in 1996, but it summed up statements he had been making for decades. Gregory Matloff and Eugene Mallove would echo him in their Starflight Handbook (Wiley, 1989), with an emphasis on the 'difficult' aspect of the journey: "Starflight is not just very hard, it is very, very, very hard!" So I guess we could say starflight is hard3. Matloff,...
Bradley Schaefer: A Response to Michael Hippke
The question of a gradual dimming of KIC 8462852 continues to make waves, the most recent response being Michael Hippke's preprint on the arXiv site, discussed in the post immediately below. Bradley Schaefer (Lousiana State University), who published his work on the dimming he found in now digitized photographs in the archives of Harvard College Observatory, disagrees strongly with Hippke's findings and is concerned that the paper impugns the solid work being performed by DASCH (Digital Access to a Sky Century@Harvard). Below is Dr. Schaefer's response with details on the astrophotographic photometry at the heart of the issue. by Bradley E. Schaefer A few hours ago, Michael Hippke posted a manuscript to arXiv (http://arxiv.org/abs/1601.07314), and submitted the same manuscript to the Astrophysical Journal Letters (ApJLett). This manuscript claims to have found that the DASCH data produces light curves with secular trends (both systematic dimmings and brightenings) over the...
KIC 8462852: No Dimming After All?
As if the Kepler star KIC 8462852 weren't interesting enough, Bradley Schaefer (Louisiana State) added to the controversy when he discovered what appeared to be a steady dimming of the star over the past century. Schaefer called the result "completely unprecedented for any F-type main sequence star," and given the discussion about KIC 8462852 as a SETI target, this raised the stakes. Something just as odd as the object's strange lightcurves was going on here, and it seemed natural to think that the dimming and the lightcurves were related. But Michael Hippke now begs to disagree. An old friend of Centauri Dreams (see, for example, his Exomoons: A Data Search for the Orbital Sampling Effect and the Scatter Peak), Hippke takes a close look at Schaefer's work and reaches a different conclusion. As he sees it, the 'dimming' of up 0.165 ± 0.013 magnitudes per century in this F3 star may actually be the result of imperfect calibration on the Harvard plates. In other words, while the...
In Search of the First Rocket Man
If you're interested enough in space to be reading this site, you've probably run into the name of Wan Hu. He's the subject of a tale that may well be spurious, but it's certainly lively. It seems that some time around the year 1500 AD, Wan Hu took his fascination with rocketry to the logical limit by building a chair equipped with 47 gunpowder rockets. Lit by 47 attendants, the combined rockets took Wan Hu somewhere, but just where is unknown, as he is said to have disappeared with a loud bang, leaving only a pall of smoke hanging over the scene. The first rocket man? Maybe. But experts on science in China find it more likely that the tale was invented somewhere in Europe, during a period (17th-19th century) when Chinese motifs were much in vogue. Frank Winter (National Air and Space Museum, Washington DC) did his own investigation and could find no mention of Wan Hu in Ming Dynasty biographical guides or histories. And apparently there are variants involving not Wan Hu but 'Wang...
Planet in Widest Orbit Yet Discovered
Free floating planets -- planets without any star -- are exotic things, presumably thrown out of their original solar system by gravitational interactions with other worlds. But the line between such wanderers and bound planets isn’t always clear. A case in point is the object 2MASS J2126, found in an infrared sky survey and at one point considered to be part of a group of young stars known as the Tucana Horologium Association. If linked to this group, its age could be inferred and it was young and low enough in mass to be considered an independent planet. Now we learn otherwise, as a research team from the United Kingdom, Australia and the United States has determined that 2MASS J2126 is in an extraordinarily wide orbit around the star TYC 9486-927-1. Lead author Niall Deacon (University of Hertfordshire) has been focusing for several years on young stars with planetary companions in wide orbits. But this system has to come as a surprise. The young planet is about 1 trillion...
Proxima Centauri & the Imagination
My essay Intensifying the Proxima Centauri Planet Hunt is now available on the European Southern Observatory's Pale Red Dot site. My intent was to give background on earlier searches for planets around the nearest star, leading up to today's efforts, which include the Pale Red Dot work using HARPS, the High Accuracy Radial velocity Planet Searcher spectrograph at La Silla, as well as David Kipping's ongoing transit searches with data from the Canadian MOST satellite (Microvariability & Oscillations of STars), and gravitational microlensing studies by Kailash Sahu (Space Telescope Science Institute). As it turned out, the choice of earlier Proxima planet hunts as a topic fit in where Alan Boss had left off. Boss (Carnegie Institution for Science) had led off the Pale Red Dot campaign's outreach effort with a piece on the overall background of exoplanetology (Pale Blue Dot, Pale Red Dot, Pale Green Dot). Whatever the color of the distant world, our tools are developing rapidly, and...
A New Filter for Life’s Survival
How do we make out the odds on our survival as a species? Philosopher Nick Bostrom (University of Oxford) ponders questions of human extinction in terms of a so-called Great Filter. It's one that gives us a certain insight into the workings of the universe, in Bostrom's view, because it seems to keep the galaxy from being positively filled with civilizations. Somewhere along the road between inert matter and transcendent intelligence would be a filter that screens out the vast majority of life-forms, keeping the population of the galaxy low, and offering us a way to gauge our own chances for survival. Think of it this way. Perhaps the Great Filter has to do with the formation of life itself. If that is the case, then we have already made it through the filter and can go about exploring the universe. But if the Great Filter is in our future, then we can't know exactly what it will be, and neither can we know whether we will survive it. Here the final term in Frank Drake's equation...
Planet Nine: “An Uneasy Exhilaration”
In the past few years, several readers have talked to me about changes to the comment format on Centauri Dreams. In particular, some way of setting up comment 'threads' seemed to make sense, and there are various plugins to make this happen. Thanks to all for their input, and in particular Michael Spencer and Daniel Suggs, the latter of whom suggested I check with Judith Curry, who runs the Climate Etc site. A few tweaks with the aid of Dr. Curry and it was done. The new format became available as of last night and I hope the 'reply' function proves useful. On to the Ninth Planet What stirred me about yesterday's story on a possible ninth planet was the involvement of Caltech's Mike Brown, whose general disbelief in any large outer system planet was known. But as Brown tweeted yesterday, he's now a believer in a nine-planet system (the reference being to Pluto, the planetary status of which was demoted not long after Brown's discovery of Eris). If Brown were involved, this promised...
Evidence for 9th Planet Unveiled
A new planet ten times the mass of Earth deep in the outer system? That's the word out of Caltech, where Konstantin Batygin and Mike Brown report the evidence from computer modeling and simulations, though no planet has yet been directly observed. The planet would orbit 20 times further from the Sun than Neptune, with an orbital period between 10,000 and 20,000 years. "This would be a real ninth planet," says Brown. "There have only been two true planets discovered since ancient times, and this would be a third. It's a pretty substantial chunk of our solar system that's still out there to be found, which is pretty exciting." Image: This artistic rendering shows the distant view from Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC). From what we know so far, the planet would explain features in the Kuiper Belt, including the fact that from a list of...
Viewing Pluto Over Time
Knowing that the data from New Horizons continues to arrive gives me a warm feeling about the months ahead. Below we have the highest resolution color image of one of the two potential cryovolcanoes found on the surface during the Pluto flyby last summer. This is Wright Mons, some 150 kilometers across and 4 kilometers high. If this is indeed a volcano, none has been discovered in the outer system that can compare with it in size. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. The image is a composite drawn from New Horizons' Long Range Reconnaissance Imager (LORRI) on July 14, 2015. The range is approximately 48,000 kilometers, giving us features down to 450 meters across. JHU/APL has also incorporated color data from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 20 minutes after the LORRI images were taken, from a range of 34,000 kilometers, and with a resolution of 650 meters per pixel. The scene on the...
Is Proxima Centauri a Bound Star?
About 1.4 million years from now, the K-class star Gliese 710, now 64 light years distant in the constellation Serpens, will brush past our Solar System. Moving to within 50,000 AU, the star could be expected to have an unsettling effect on cometary orbits in the Oort Cloud, perhaps dislodging some of these comets to cause them to move into our inner planetary system. An interesting scenario, particularly remembering speculation that comets were a source of water for the early Earth, and may perform a similar function in other young systems. So just how common are such celestial encounters? We may have one at our very doorstep in the form of Proxima Centauri. The Pale Red Dot campaign that began yesterday is focusing on a red dwarf that is roughly 15,000 AU from the close binary stars Centauri A and B. If you think about what our system would look like with a red dwarf at the inner edge of the Oort Cloud, you can see that Proxima may play a large role in the evolution of the...