Now that we're getting closer to analyzing the atmospheres of terrestrial-size exoplanets, it's worth remembering how difficult the call on the existence of life is going to be. Long-time Centauri Dreams contributor Alex Tolley takes on the issue in his essay for today, pointing out along the way just how easy it is to see what we want to see in our data. While we can learn much from terrestrial biology, new approaches looking at 'pathway complexity' may offer useful indications of biology and a set of markers not constrained by our own unique sample of life on Earth. A lecturer in biology at the University of California, Alex brings us up to speed with extending our methods of life detection in ways that are 'biology agnostic.' Expect controversy ahead -- will we know life when we see it, and how can we be sure? by Alex Tolley Manuel Werner, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=633977 Life: [noun]? The condition that distinguishes animals and plants from...
A ‘Rogue’ Object’s Strong Magnetic Field
Given the spectacular interactions between Io and Jupiter -- the moon plays a major role in shaping the planet’s magnetic field and contributes a cloud of particles originally produced by its volcanic activity -- it’s all but inevitable that a recently discovered ‘rogue’ object would be compared to the duo. The rogue in question is SIMP J01365663+0933473, a planetary mass object of perhaps 12 Jupiter masses that is at the boundary between brown dwarf and planet. Between 12 and 13 Jupiter masses is considered to be the deuterium burning limit; i.e., above this, we would expect a gaseous object to be a deuterium-burning brown dwarf. What an intriguing situation we find here. Originally found in data collected by the Very Large Array, SIMP J01365663+0933473 (which I’ll now mercifully shorten, as per the paper, to SIMP0136) has a magnetic field some 200 times stronger than Jupiter’s. The discovery marked the first radio detection of a possibly planetary mass object beyond our Solar...
Plate Tectonics: Necessary for Habitability?
Just how important is plate tectonics for the development of complex life? We’ve learned that its continual churn, with material pushing up from ocean rifts and being subducted as it meets continental shelves, can moderate the Earth’s climate. Increasing temperatures are tamped down through the capture of excess carbon dioxide in rocks, which reduces potential greenhouse conditions. Lowering temperatures will produce the reverse effect. The result is a mechanism for maintaining stable temperatures that some have seen as necessary for life. "Volcanism releases gases into the atmosphere, and then through weathering, carbon dioxide is pulled from the atmosphere and sequestered into surface rocks and sediment," said Bradford Foley, assistant professor of geosciences at Penn State University. "Balancing those two processes keeps carbon dioxide at a certain level in the atmosphere, which is really important for whether the climate stays temperate and suitable for life." And indeed, most of...
Toward An Archaeology of Exo-Civilizations
Light of the Stars: Alien Worlds and the Fate of the Earth, by Adam Frank. W.W. Norton & Co. (2018), 272 pp. Although he has published several previous books and is well represented in the technical literature, Adam Frank (University of Rochester) found himself suddenly thrust onto the public stage with an op-ed he wrote in the New York Times in 2016. Chosen by the paper's editors, the title "Yes, There Have Been Aliens" injected a certainty Frank didn't intend, but it brought up an intriguing point: We may not know whether other technological civilizations exist now, but the odds are exceedingly good that at some point, somewhere, they once did. Frank and colleague Woody Sullivan had written the original idea up for Astrobiology, the result of their pondering how exoplanet data now streaming in could be used to refine the original Drake equation, which sets up the factors thought to determine the prevalence of technological societies in the universe. In his new book Light of the...
On to Ultima Thule
I am now back on the job, and somewhere beyond Pluto seems a good place to go. Somehow it seems safer out there. While vacationing here on Earth, I was bitten by a brown recluse spider, spent two weeks with a swollen and painful foot, and came down with the most intense flu-like symptoms I've ever experienced. The final indignity: I received my monthly report on Centauri Dreams reader statistics. Since I had done no posting for a large portion of this report, I was curious to find out how much traffic had slowed in my absence. It turned out that traffic increased right after I stopped posting and stayed robust the entire time. I am trying to figure out what this means... But back to New Horizons, putting my tumultuous vacation experience behind me. Anyone who remembers how hard it was to find a suitable Kuiper Belt Object to serve as New Horizons' next target will understand how challenging it would be to observe MU69 from the ground. The distant object, perhaps a binary, must be...
Revising the Classical ‘Habitable Zone’
With my time-out period over (more about this next week), I want to get back into gear with the help of Ramses Ramirez, a specialist on planetary habitability whose work has now taken him to Japan. Born and raised in New York City, Ramses tells me he is much at home in his new position as a research scientist at the Earth-Life Science Institute (ELSI) in Tokyo, where opportunities for scientific collaboration abound and the chance to learn a new language beckons. We've looked at Ramses' papers a number of times in these pages, and I was delighted when he offered this description of his work to our readership. A student of James Kasting, he received his Ph.D. from Penn State in 2014 and went on to postdoc work with Lisa Kaltenegger at Cornell's Carl Sagan Institute. A fascination with astrobiology and the issues involved in defining habitable zones continues to be a primary focus. Ramses' new paper ponders whether we are best served by looking for life similar to Earth's because this...
Time Out
Dave Brubeck's Time Out album was the first jazz LP I ever bought, just after it came out in 1959, the same year that Miles Davis released Kind of Blue. Watershed moments both. Paul Desmond once said of his alto sax work that he was trying to create the sound of a dry martini, a description I certainly can't top. Last night, while listening to Desmond and Brubeck, I realized that the Time Out album would be emblematic for today's post. For it's that time of year, and I am indeed taking time out for a much needed break. Centauri Dreams will be back in the first week of August, but until then, my break will include a good bit of jazz, much catch-up reading, a lot of long walks and, perhaps, a few of those martinis Desmond talks about. I'll keep an eye on the site to handle comment moderation as well. Meanwhile, I hope all of you are having a splendid summer.
Unusual Companion for a Brown Dwarf Binary
A cluster of stars sharing a common origin, now gravitationally unbound, is referred to as a stellar association. I’ve written before about how useful some of these groupings can be. In the form of so-called moving groups -- a stellar association that is still somewhat coherent -- they help us identify stars of similar age, an aid as we discover new objects. Now we have word of an object called 2MASS 0249 c, found in the Beta Pictoris moving group, that has striking similarities to the most famous member of that group, Beta Pictoris b. 2MASS 0249 c, like Beta Pictoris b, was found by direct imaging, meaning we’re actually looking at the object under discussion in the image below. The two objects are all but identical in mass, brightness and spectrum. Images from the Canada-France-Hawaii Telescope (CFHT) showed an object moving at a large distance from its host, which turned out to be a pair of closely spaced brown dwarfs. Follow-up observations with the Keck instrument allowed that...
An Unusually Interesting Asteroid
We learned late last week that the near-Earth asteroid 2017 YE5, discovered just last December, is what is described as an 'equal mass' binary. This would make it the fourth near-Earth asteroid binary ever detected in which the two objects are nearly identical in size, both about 900 meters. The binary's closest approach to Earth was on June 21, 2017, when it came to within 6 million kilometers, some 16 times the distance between the Earth and the Moon. It won't be that close again for at least another 170 years. Image: Artist's concept of what binary asteroid 2017 YE5 might look like. The two objects show striking differences in radar reflectivity, which could indicate that they have different surface properties. Credit: NASA/JPL-Caltech. What you have above is an artist's impression of how 2017 YE5 appears, but have a look at the radar imagery below. This comes from NASA's Goldstone Solar System Radar (GSSR, observations conducted on June 23, 2018), and shows the presence of two...
Ross 128b: Analyzing a Planet by the Light of its Star
Red dwarfs have a lot of things going for them when it comes to finding possibly habitable planets. A planet of Earth size in the HZ will produce a substantial transit signal because of the small size of the star (‘transit depth' refers to the amount of the star's light that is blocked by the planet), and the tight orbit the planet must follow increases the geometric probability of observing a transit. But planets that do not transit are also more readily detected because of the large size of the planet compared to the star, gravitational interactions producing a strong radial velocity signature, which is what we have in the case of Ross 128b. About 11 light years from Earth, the planet was culled out of more than a decade of radial velocity data in 2017 using the European Southern Observatory's HARPS spectrograph (High Accuracy Radial velocity Planet Searcher) at the La Silla Observatory in Chile. The location of the planet near the inner edge of its star’s habitable zone excited...
Pluto Maps Inspire Thoughts of Bradbury
Something happens when we start making maps of hitherto unknown terrain. A sense of familiarity begins to settle in, a pre- and post-visit linearity, even when the landscape is billions of miles away. To put a name on a place and put that name on a map is a focusing that turns a bleary imagined place into a surface of mountains and valleys, a place that from now on will carry a human perspective. It can't be undone; a kind of wave function has already collapsed. And what place more remote than Pluto? At the dwarf planet's Tenzing Montes, we find striking peaks, some of them running up to 6 kilometers in height, and all this on a world that, until 2015, we weren't sure even had mountains. Certainly we weren't expecting mountains this tall, or a terrain this rugged. Given how many years may pass before we have another chance to visit Pluto/Charon, these first official validated topographic maps of the dwarf planet and its moon, just released, will carry our science -- and our...
TVIW Symposium on The Power of Synergy
Ever since I started Centauri Dreams in 2004, I've been talking about the question of infrastructure within the Solar System. My thinking has always been that while we will doubtless get off interstellar missions beginning with robotics on an ad hoc basis during this century, the prospect of a sustained effort will require a built-out infrastructure that will help us create and test out deep space systems of many kinds, from new propulsion technologies to closed loop life support experiments. One step at a time, but do this right and we may push deep into the Kuiper Belt, then the Oort Cloud and, we can hope, beyond. That's a long-term vision and it clashes with what we've seen since Apollo, a retreat from lunar exploration by humans that may eventually be reversed as we think about partnerships between commercial aerospace and government space programs. To explore these concepts, an upcoming meeting called the TVIW Symposium on The Power of Synergy is to be held in Oak Ridge, TN...
Listening in on Enceladus
When I was a boy, I used to scan shortwave frequencies with an old Lafayette receiver in search of distant stations. When I learned that Jupiter was a radio source, my passion for radio DXing took a new turn, merging with my interest in astronomy. When I tried to log the planet's violent outbursts, I learned with a little digging in the library that Jupiter could be detected from about 15 MHz up to 40 MHz, with the best window somewhere between 18 MHz and 28 MHz. Called 'decametric noise storms,' the Jovian bursts sometimes sounded like ocean waves hitting a shore, but there were also short bursts that could be confused with local lightning, and to this day I'm not really sure whether I really heard Jupiter or not. When you're listening for something that sounds like the ocean in the shortwave bands, it's all too easy to think you're hearing it in the background noise, and a little imagination makes you think you've found your target. These days we can listen to just about anything...
The Apkallu Initiative: A Minilithic Artefact for Rebooting Human Civilization in the Event of Global Cataclysm
Kelvin Long is a familiar face on Centauri Dreams, the author of several previous articles here and many publications in the field of interstellar studies. The creator of Project Icarus, the re-design of the Project Daedalus starship of the 1970s, Long was a co-founder of Icarus Interstellar and went on to head the Initiative for Interstellar Studies. He also served as editor of the Journal of the British Interplanetary Society during a critical period in the journal’s history, and authored Deep Space Propulsion: A Roadmap to Interstellar Flight (Springer, 2011). Today he turns his thoughts to catastrophe, and the question of what would happen to human civilization if it were reduced to a small remnant. Could we preserve the most significant treasures of our science, our culture, in the face of a devastated Earth? Exploring these ideas takes us deep into the past before turning toward what Kelvin sees as a possible solution. by Kelvin F Long The year is 2050. Earth is a thriving...
Occator Crater Up Close
It's startling to think that the Dawn spacecraft, now orbiting Ceres at its lowest altitude ever, may have fired its ion engine for the last time. The event occurred by way of positioning the spacecraft for the best possible track near Cerealia Facula, which is a prominent deposit of sodium carbonate in the center of the crater called Occator. Data from the spacecraft's visible and infrared imaging spectrometer had been used to identify the bright areas called faculae as calcium carbonate deposits earlier in the mission. Vinalia Faculae is in the same area. "Acquiring these spectacular pictures has been one of the greatest challenges in Dawn's extraordinary extraterrestrial expedition, and the results are better than we had ever hoped," said Dawn's chief engineer and project manager, Marc Rayman, of NASA's Jet Propulsion Laboratory, Pasadena, California. "Dawn is like a master artist, adding rich details to the otherworldly beauty in its intimate portrait of Ceres." Image: A...
Uranus: Orbital Tilt from a Cataclysmic Collision
Yesterday’s post about exoplanet obliquity inevitably brought our own system to mind, with the stark variations between planets like Earth (23 degrees), Uranus (98 degrees) and Mercury (0.03 degrees) serving as stark examples of how wide the variation can be. Thus seasonality has to be seen in context, and interesting questions arise about the effect of high degrees of obliquity on habitability. While thinking about that I received a new paper on Uranus that has bearing on the matter, with its attempt to quantify the ‘hit’ Uranus must once have taken. After all, something accounts for the fact that the 7th planet spins on its side, its axis at right angles to those of the other planets, its major moons all orbiting in the same plane. Lead author Jacob Kegerreis (Durham University), working with Luis Teodoro (BAERI/NASA Ames) and colleagues modeled 50 different impact simulations in an attempt to recreate the axial tilt of this world. In play were the planet’s internal structure,...
Probing Exoplanet Obliquity
It's always a shock for me when the soft air and fecund smells of spring slam into a parched and baked July, but seasonal change is inevitable. At least it is on Earth. We get such seasonal changes because of Earth's obliquity, the angle of its spin axis relative to the plane of its orbit. For Earth, the angle has stayed pretty close to 23 degrees for a long time, although the tilt's direction wobbles over cycles of thousands of years. And this very constancy of obliquity turns up in exoplanet discussions at times because it affects conditions on a planetary surface. Some have argued that without the gravitational effects of the Moon, the tilt of the Earth would be changed by the gravitational pull of the Sun and planets, producing a potentially high degree of obliquity. Contrast our situation with that of Uranus, where we find a 90-degree tilt that leaves one pole in sunlight for half the Uranian year as the other remains in darkness. Without knowing how long the Moon has been able...
The Dipole Drive: A New Concept for Space Propulsion
One reason we look so often at sail technologies in these pages is that they offer us ways of leaving the propellant behind. But even as we enter the early days of solar sail experimentation in space, we look toward ways of improving them by somehow getting around their need for solar photons. Robert Zubrin's work with Dana Andrews has helped us see how so-called magnetic sails (magsails) could be used to decelerate a craft as it moved into a destination system. Now Zubrin looks at moving beyond both this and solar wind-deflecting electric sails toward an ingenious propellantless solution. Zubrin presented the work at last April's Breakthrough Discuss meeting, and today he fills us in on its principles and advantages. Read on for a look at a form of enhanced electric sail the author has christened the Dipole Drive. by Robert Zubrin Abstract The dipole drive is a new propulsion system which uses ambient space plasma as propellant, thereby avoiding the need to carry any of its own. The...
‘Oumuamua: New Data Point to a Comet
New evidence for the nature of interstellar object ‘Oumuamua is in, making it far more likely that the unusual interloper is a comet rather than an asteroid. The data come from an array of instrumentation -- the Hubble Space Telescope, the Canada-France-Hawaii Telescope, ESO’s Very Large Telescope and the Gemini South Telescope -- and show that `Oumuamua is slowing down slightly less than expected. We are talking about a tiny force, about 1/1000 as strong as the pull of the Sun’s gravity, according to this overview of new work in Nature. The science paper on this work, which also appears in Nature, looks at a variety of possible explanations for the velocity change. The one the authors think most likely is that `Oumuamua (pronounced “oh-MOO-ah-MOO-ah”), now moving at some 114,000 kilometers per hour, has vented material during its pass through our system, behaving the way many comets do. Marco Micheli (ESA), lead author of the paper, puts it this way: “We can see in the data that its...
Hayabusa 2 Arrives at Ryugu
The asteroid game is heating up. The Japanese probe Hayabusa 2 has arrived at asteroid 162173 Ryugu, the plan being to reach the surface with landers later this year and bring back samples in 2020. We also have ORISIS-REx, launched in 2014, on course to 101955 Bennu in December, with a sample return planned for 2023. Assuming both missions are successful, scientists will have the opportunity to compare the composition of the two. Both are C-type (carbonaceous) asteroids, darker than previously explored asteroid Itokawa. The current Hayabusa is similar to the probe that first returned an Itokawa sample to Earth in 2010. JAXA confirmed the arrival of Hayabusa 2 at 9:35 (Japan time) on the 27th: "The National Research and Development Corporation Japan Aerospace Exploration Agency (JAXA) announces that we have confirmed the arrival at asteroid Ryugu (Ryugu) of the asteroid explorer 'Hayabusa 2'", adding that the distance between the spacecraft and the asteroid is about 20 kilometers....